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ABSTRACT

Enabling abstraction within a programming language has benefits. However, the associated complexity of such
abstractions often pose a steep learning curve for users. While user interfaces or visual scripting can help alleviate
this to some extent, they often lack readability and reproducibility, especially as complexity grows. Herein,
we explore the use of Large Language Models (LLMs) as an intermediate between the nuanced, syntactical
programming language and the natural (human) way of describing the world. Our formal language LSCENE is a
way to procedurally generate realistic synthetic scenes in the Unreal Engine. This tool is useful because artificial
intelligence (AI) typically requires large volumes of labeled data with variety. To generate such data for training
and evaluating AI, we employ an LLM to interpret and sample LSCENEs that are compatible with user input.
Through this approach, we demonstrate a reduction in abstract complexity, elimination of syntax complexity,
and the ability to tackle complex tasks in LSCENE using natural language. To illustrate our findings, we present
three experiments with quantitative results focused on spatial reasoning, along with a more intricate qualitative
example of automatically generating an environment for a specific biome.
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1. INTRODUCTION

The manual creation or specification of digital content constitutes a resource-intensive endeavor, demanding sig-
nificant time and financial investments. In the past few decades people have sought new ways to streamline tasks
across domains, namely in entertainment. Early examples date back to the 1970s, with procedural generation
techniques employed in tabletop role-playing games, and Perlin noise in the 1980s,1 which revolutionized texture
and terrain generation in computer gaming and film. Since then, a plethora of procedures have been proposed,
from cellular automata to fractals, Brownian motion, decision trees, L-systems, and more, addressing diverse
needs like textures/materials, objects (e.g., trees, buildings), organisms (e.g., characters, kinematics, animation),
environments (e.g., dungeons, terrain, mountains, cities), to game play itself (Valve’s AI Director in Left 4 Dead).
While historically these tools have been primarily confined to closed academic or entertainment circles, recent
years have witnessed the emergence of low-to-no cost professional-grade tools. Notable examples include Houdini
and new advancements in the Unreal Engine 5. The pursuit of streamlining content creation processes remains
an academic and financial topic of paramount interest across disciplines.

In this article, we explore the role of large language models (LLMs) to streamline the procedural generation
process. Previously, we introduced LSCENE, a structured formal language for specifying 3D scenes, and LCAP, a
language for data collection.2,3 A limitation of our prior work is its tedious nature. There often exists complexity
in expressing high-level concepts and relationships via the low-level syntax used in LSCENE. Manual editing
of an LSCENE JSON can be challenging. The objective of the present article is to leverage natural language
descriptions as input, e.g., “make a scene with a few small wooden boxes on an open grassy field with a few
medium bushes.” An LLM is used to understand and translate the user’s request into a LSCENE JSON, which
is then consumed by a procedural engine to sample and build a 3D environment. This article serves as both
an exploration into the feasibility of using LLMs for this purpose and an investigation into effective methods to
achieve high-quality results with minimal user interaction.

Our focus is the automated generation of scenes (via LSCENE) and data (via LCAP) that facilitate the
training, evaluation, and closing the loop on artificial intelligence (AI). Our aim is to establish a streamlined
process for automatically sourcing content from large, high-quality photometrically scanned assets to construct
computer vision image datasets that enable tasks like 3D reconstruction, object localization and detection,



Figure 1: Illustration of the current article. Users interact with an LLM to more easily construct a formal
specification of a scene (LSCENE) that is interpreted by a procedural generation engine. This scene is sampled
to produce a data set (via LCAP), with associated ground truth, to train and evaluate an AI model.

semantic segmentation, fusion, and dynamic interrogation. Simulation has numerous advantages in this regard.
Notably, data collection in the real world poses significant challenges, particularly in acquiring precise metadata
and ground truth, often serving as a bottleneck for many applications. Simulation offers the ability to rapidly
prototype, gather data for augmenting real-world datasets, or directly train AI models. However, a key challenge
lies in specifying the desired data to be collected and ensuring its generation at scale, in terms of volume, variety,
and quality. Employing vague, high-level natural language-based descriptions simplifies human input and output,
enhances explainability, and aids in the closed-loop process, where insights gained from experiments inform future
sampling strategies. Recent research has shown that harnessing language as a bridge between different domains
such as imagery and text can lead to foundation models that enhance generality. This approach facilitates deeper
and more robust reasoning, bolstered by these versatile representations.

Our article contributes in several key ways. Firstly, we explore multiple LLMs and employ different strategies
for framing our task to them. Secondly, we conduct multiple examples to assess the overall effectiveness of
each LLM and interaction strategy. Thirdly, we provide a reflective analysis, highlighting the pros and cons of
these various approaches. Our aim is to offer insights into promising pathways and practical limitations, thereby
informing the reader and directing future work. Figure 1 is a high level overview of the proposed article.

2. RELATED WORK

2.1 Procedural Generation

The realm of procedural generation has been a subject of extensive research within the video game and film
industries for decades. Dating back to 1985, Perlin pioneered the development of algorithms based on noise func-
tions to craft procedural materials, initially showcased through the creation of a marble vase.4 This procedural
approach evolved to encompass a variety of methodologies such as fractals and L-systems,5,6 utilized for gener-
ating intricate structures like plants, trees, and vegetation. Subsequent research delved into real-time procedural
terrains7 and city generation,8 with companies like SideFX building on these concepts to realize commercial tools
like Houdini. While focus has predominantly been on algorithms for asset generation, including creatures and
animation, recent endeavors have expanded to prioritize user experience. Notably, Valve’s introduction of the AI



Director in Left4Dead9 exemplifies this shift, employing algorithms to dynamically adjust entity spawning and
properties within maps, enhancing gameplay pacing based on user engagement. Moreover, procedural text-based
games and maps, such as dungeons, have a longstanding presence in video games, dating back even further.

In recent years, Epic Games has made strides in the realm of procedural content generation with a suite
of tools centered around the Unreal Engine (UE). While UE has historically offered support for procedural
features such as terrain creation and foliage spawning, the latest iterations of the engine have expanded upon
this foundation. For instance, with the release of UE5.2, Epic introduced the Procedural Content Generation
(PCG) plugin, which boasts support for a range of procedural functionalities including mesh generation, texture
creation, foliage placement, level generation, and animation. Notably, these capabilities have been seamlessly
integrated with UE’s Blueprint Visual Scripting system, enhancing accessibility and ease of use. Furthermore,
in UE5.4, Epic unveiled support for an additional PCG tool, the Biome Creation plugin. This innovative tool
adopts a flexible, data-driven approach, leveraging systemic methodologies to empower creators with the latest
advancements in procedural content generation.

Despite the abundance of procedural concepts in content generation for user experiences, relatively limited
attention has been directed towards procedural algorithms catering to the needs of AI. The UE PCG tool , for
example, has poor integration with generative AI since a LLM can not yet interface with the blueprint medium
in a sufficient manner. This raises critical questions regarding the types, volumes, varieties, and attributes of
data essential for AI applications, marking AI as a relatively new “consumer” in the procedural domain.

2.2 Large Language Models (LLMs)

Using large language models (LLMs) as translators, for programming or normal written languages, has been one
of their most successful applications see Zhu 2023,10 Jiao 2023 (GPT-4),11 and Briako 2023(PALM).12 These
findings suggest that LLMs can be used for novel languages which have the same principles as the other languages
that the LLMs have been trained and exposed to. For example, Google’s Gemini pro was tested on Kalamang,
which has less than 200 speakers worldwide, and it was able to translate English to Kalamang at a human level
with the amount of content given. This idea of taking English sentences and turning them into a never before
seen language, or vise versa is a powerful feature of LLMs. Understanding how LLMs can connect general ideas
to each specific language is important. For instance, Bhattamishra 202013 discusses how LLMs are capable
of learning general rules for formal languages that do not have “periodicity and modular counting.” Positional
encoding solves most of the issues of the self attention layer in transformers for learning more complex languages.
Hierarchical and recursive languages fall under this realm. The metrics that confirm this emergent behavior,
however, often have their own problems.

Testing LLMs on spatial reasoning tasks such as CALVIN, Sharma2023,14 or seeing what topological or math-
ematical a model understands, yamada202415 are additional techniques to understand the limits of the model’s
reasoning, knowledge, and general intelligence. The use of standardized tests to evaluate LLM’s capabilities
is not well understood. Even though benchmark datasets exists, contamination of these tests in the training
are wide spread. For example, OpenAI stated in their technical report on GPT-4, that “the degradation (non-
contaminated percent minus contaminated) is generally small and as often positive as negative, from which we
conclude that contamination is not a substantive confounder on the overall results.”16 So although they had full
tests in the training data, such as the GRE or LSAT, etc., they claim the data shows no correlation between
success rate on the test (GRE is contaminated but GPT-4 preforms worse on this than other standardized tests
with less contamination). This is an inherently flawed assumption to make. Comparing accuracy on one test
with contamination to another (with less), is not a legitimate method to dismiss the role contamination may
have played on the model’s performance.

Given the absence of a single LLM showcasing superior performance across all tasks and the rapidly evolving
nature of the field, it becomes imperative to examine multiple LLMs to derive conclusions for the current article.
Herein, we delve into the specifics of the following LLMs (see Table 1):

• M1 (Gemini-1.5-pro): (Google) A mixture of experts model that boasts a 1 million token context length.

• M2 (GPT-4): (OpenAI) Scores high on most standardized tests and currently one of the most consistent
LLM for problem solving and creative tasks, only 32k context length.



Table 1: LLM Models
Model Label Full Model Name

M1 Gemini-1.5-pro
M2 GPT-4
M3 GPT-3.5-turbo
M4 Claude-3-opus-20240229
M5 Claude-3-sonnet-20240229
M6 Claude-3-haiku-20240307

• M3 (GPT-3.5-turbo): A faster but simpler model than GPT-4, good for most everyday tasks.

• M4 (Claude-3-opus-20240229): (Anthropic) LLM that rivals OpenAI’s GPT-4 in abstract and creative
problem solving, as well as 200k context length with good recall. The most capable model from Anthropic.

• M5 (Claude-3-sonnet-20240229): (Anthropic) Comparable to GPT-4, this model demonstrates lower per-
formance on various mathematical and graduate-level assessments, rendering it less proficient overall.

• M6 (Claude-3-haiku-20240307): (Anthropic) Comparable to GPT-3.5.

Figure 2: Example of procedurally generated imagery in the Unreal Engine 5 for a simple LSCENE corresponding
to “a few blue water cans in an open grassland biome at different times of day.”2,3

3. LSCENE

We recommend referring to our previous articles on LSCENE and LCAP for full details.2,3 In this section,
we present a succinct overview essential for understanding key concepts discussed in this article. Figure 2 is
LSCENE imagery for a simple scene with a few target objects (blue water cans) in an open grassland biome at
different times of day. Specifically, the LSCENE specified foliage objects (bushes) on a grassy terrain (different
textures/materials) with sparse grass. The ability to create procedural scenes like these typically involves estab-
lishing rules and constraints governing the generation, placement, and attributes of objects. These mechanisms



allow each procedural instance to draw from a defined space based on specific conditions. However, approaches
relying on simplistic rules and limited expressiveness often result in unrealistic and/or repetitive arrangements.
Here, we delve into a formal language that utilizes simplified JSON markup to enhance human editing and
readability. LSCENE is as a powerful way to specify a scene that can then be sampled to procedurally generate
complex and diverse synthetic environments.

We start by considering a trivial LSCENE (see Listing 1). For computer vision, we often desire to maintain
certain visual characteristics like object texture or size while granting freedom in sampling spatial arrangement
and orientation. This can be succinctly expressed as, “I want a scene with many instances of object One that
have Texture A or B with random rotations and placement ON the Landscape.”

Listing 1: Simple LSCENE specifying 1,000 to 2,000 sampled instances of an object wth varying textures, random
orientations, and positions in a user constrained region of space (“on” the landscape).

{
"Amount": [1000, 2000],

"Mesh": "Object One Mesh",

"Material": ["Texture A", "Texture B"],

"Rotation": {
"RANGE": [[0, 0, 0], [360, 360, 360]]

},
"XYZ Position": {"ON": "Landscape"}

}

While LSCENE operates at an abstract level with various implementation possibilities, we have predomi-
nantly used it in conjunction with the Unreal Engine (UE). Specifically, our implementation involves leveraging
material parameters within UE5 to facilitate seamless texture swapping on materials. UE employs this method
to amalgamate multiple textures—such as normals, base color, and displacement maps—into a unified material,
culminating in a final output. Moreover, the availability of free assets from Quixel has proven advantageous. We
adhere to the same naming conventions and employ identical master materials to ensure consistency in parameter
manipulation across materials. Despite this standardization, LSCENE remains flexible enough to accommodate
different parameter names for third-party materials, allowing for customization, modification, and sampling.

For an exhaustive list of capabilities, please refer to our previous work in Ref. 2, which delves into compre-
hensive functionalities and practical applications. The key takeaway is that LSCENE boasts a minimalist syntax
conducive to sampling, yet possesses enough expressiveness to generate intricate and photorealistic scenes, thanks
to the capabilities of UE5 and the availability of photometrically scanned assets from Quixel and other sources.

4. LLM DRIVEN LSCENE GENERATION

Current generation of scenes with LSCENE requires the manual markup of a JSON, a parser in C++, and UE
which serves as the 3D rendering software and data extractor. A user who can navigate UE’s Editor has a
majority of the skills needed to produce data via LSCENE. What is left to learn is the LSCENE’s syntax, which
simply serves as a translation between the 3D scene a user is thinking of and creating that in UE. LSCENE is
comparable to CSS, XML, HTML, Markup, and other Markup languages, only with the syntax of JSON gluing
LSCENE together. The ideas present in all of these markup languages serve to label or describe properties of
a web page, document, or other abstract data. Although LSCENE is a new and unseen language for an LLM,
based on the literature, (Zhao, 2023),17 (Bubeck, 2023)18 and similarity between other known languages and
markup, these models should perform adeptly at generating LSCENE JSON markup.

Creating a 3D scene using user-defined assets is made straightforward by employing Retrieval Augmented
Generation (RAG) methods, as detailed in Gao (2024)19 and Lewis (2021).20 In RAG, the embedding vector de-
rived from a description of assets serves as the foundation for searching a database containing asset descriptions.
A distance metric is computed between the embedding vectors, returning all vectors within a user-defined thresh-
old as matches. This approach does not utilize generative AI; instead, it relies on the accuracy of embedding
vectors in capturing information from natural text descriptions.



A challenge with these methods, however, is that while data retrieval is automated, overall context and
decision-making still rests with the LLM after data retrieval. For relatively small databases, managing data
through text documents remains a viable approach. OpenAI, Anthropic, and Google all endorse the practice of
uploading files and inputting tokens at the prompt layer to enable models to reason and understand user-provided
data. LSCENE will leverage this method for asset selection, feeding information into the prompt layer. Moreover,
techniques like prompt engineering (Sahoo, 2024),21 chain of thought (Wei, 2922)22 and prompt tuning (Nori et
al., 2023)23 enhance performance with LLMs. They also provide valuable insights into effective communication
with LLMs via structured prompting guidelines, RAG, agent ensembles, and similar methodologies. Let it be
known, that although LLMs perform well, they do not respect formalism, grammars, or Automata completely,
see (Liu,2023).24

In contrast, we delve into (refer to Table 2) a straightforward method aimed at discerning the essential
information requisite for a model’s success. We inquire whether the level of abstraction in the prompt correlates
with the efficacy of more adept agents. Is it more advantageous to present a single example encompassing all use
cases, or to provide five examples with more detailed labeling but distributed information? Each configuration
is ingested as system directives or prompts. Our objective is to present robust examples embodying common
spatial or relational requisites encountered during scene construction. By ensuring that the LSCENE generated
aligns with the user’s specifications, we instill confidence in the accuracy of the output.

Table 2: LLM configurations explored herein for LSCENE generation
Configuration Label Meaning

EX1:A Generic LSCENE JSON with documentation
EX1:B LSCENE JSON example with all use cases
EX1:C EX1:A and EX1:B
EX1:D Five shot LSCENE examples

An illustrative instance of a generic LSCENE configuration is provided in Listing 2, accompanied by cor-
responding text or natural language documentation in Listing 3. This example, denoted as EX1:A in Table 2,
offers insight into the structure and content of a typical LSCENE setup. For a comprehensive listing of prompts
and directive information, please refer to the appendix.

Listing 2: Generic structure of an LSCENE JSON that we provide to an LLM.

"Object_Identifier": {
"Amount": ["low_num", "high_num"],

"A_Class": [

{"class_name1": "probability1"},
{"class_name2": "probability2"}

],

"Overlap": "boolean_value",

"Scale": ["low_scale", "high_scale"],

}

Listing 3: Generic LSCENE documentation that we provide to an LLM.

"A_Class": "Specifies the class or Mesh of the object .",

"Overlap": "Specifies whether objects can overlap each other .",

"Amount": "Specifies the range of instances of an object .",

"Scale": "Specifies the range for the scaling of the object .",

5. EXPERIMENTS

Numerous aspects of LSCENE warrant exploration and validation. These include an LLM’s proficiency in
generating syntactically correct programs, its capability to navigate an asset library and retrieve appropriate



content, and its ability to manipulate attributes such as color and shape, among others. While there are myriad
cases to consider, we narrow our focus to a singular yet crucial attribute: spatial relations.

Generating procedural LSCENEs requires an LLM to possess some level of spatial intelligence. For example,
users frequently desire to place objects in particular relative configurations, e.g., “ON the ground,” “IN a grid,”
or “NEAR the edge.” While these are relatively simple configurations, more complicated composite examples
exist, e.g., in a spiral, fractal, or stacked pyramid formation. Ideally, an LLM should be capable of generating
a variety of scenes from straightforward prompts. Consider a scenario in which we want to train a deep neural
network for image classification or semantic segmentation, which typically demands vast amounts of labeled data.
To enhance the network’s generalization capabilities, extensive sampling is essential. Considering variation across
variables like texture, shape, occlusion and relative viewing is imperative for achieving robustness. Thus, the
creation of complex scenes, along with associated collection specifics outlined in LCAP, derived from procedural
language rules is indispensable. To assess the spatial reasoning abilities of current generation LLMs and their
capacity to integrate these concepts into a formal LSCENE, we propose a set of experiments.

Utilizing the directives outlined in Table 2 as input variations for each model described in Table 1, we instruct
the LLMs to generate LSCENEs featuring random spatial placement, grid placement, and spiral placements.
Each LLM configuration is designed to test different skills. In EX1:A, abstract rules and generic markup, along
with simple documentation explaining each function in LSCENE, are provided. For instance, a function like
A Class is defined with a description indicating its purpose and expected arguments. EX1:B takes a literal
approach, offering an instanced LSCENE JSON with all possible use cases of LSCENE functions. However, no
documentation accompanies these examples, only literal instances of function usage. Combining elements from
EX1:A and EX1:B, EX1:C creates a comprehensive prompt/directive containing literal examples, documentation,
and abstract definitions for each function. In EX1:D, we present five examples with labeled input and output.
Input descriptions represent scene descriptions, while output showcases generated LSCENE JSON corresponding
to the given natural language description. Last, human evaluators are tasked with assessing these tasks, assigning
a pass or fail based on the criteria outlined in Tables 3, 4, and 5. Syntax errors may arise from incorrect function
usage, hallucinations, or structural issues within the LSCENE JSON. While a model may get part of a task
correct, such as placing an object on the ground, it may also have a syntax error in the same output when
hallucinating a “stack” function for example. Thus we have divided tasks into 3 categories of completeness, with
error tracking to handle undefined behavior from the model.

5.1 Experiment 1: Random Spatial Placement

Placing objects within, on, or stacked atop one another may seem like straightforward requests, but there exists
a crucial connection between the objects defined in the LSCENE and the spatial properties required for each
arrangement. In LSCENE, the syntax accommodates spatial constraints such as ON or IN, simplifying the task
for any LLM by enabling the correct invocation of these functions on the objects it positions. A LLM lacking
this capability would struggle to use previously defined objects in the LSCENE correctly within the 3D space
it constructs. Moreover, since objects in LSCENE can derive their position and dimensions from other objects,
there’s also an algebraic component involved in calculating the final bounds or positions of certain objects.

Place Any entails the model’s ability to accurately position objects on landscapes or other objects, demon-
strating its capability to reference LSCENE objects correctly. One and In introduces the constraint that an
object must be placed on another object while remaining within the bounds of yet another object. This presents
a double spatial constraint where both a boundary must be established and adhered to, and an object must
be created and placed within this defined zone. Stacked represents a more abstract requirement. Initially, an
object must be placed on another, such as the ground. Then, after these objects are positioned, an additional
object must be stacked atop the already placed object. Although the LSCENE syntax for stacked may seem
only marginally different from the other two, it necessitates a more meticulous interpretation of the scene de-
scription (the user’s request for a stacked object) and requires careful consideration of how to implement this in
the LSCENE syntax (e.g., Object B ON Ground, Object A on Object B).

As an example, Figure 3 is an example of GPT-4 ability to support the Place Any request. The full set of
results across LLMs is reported in Figure 4. Last, Table 3 reports the pass and fail behavior of our four different
progressively more challenging constraint tasks for the different LLMs.



Figure 3: LSCENE generation of cubes via EX1:A for the random spatial placement experiment using GPT-4.

Figure 4: Random placement completion results across LLMs for Experiment 1.



Table 3: LLM LSCENE Generation for Random Spatial Placement (see Experiment 1)
Model Place Any On and In Stacked Syntax Error

M2 ABCD AD D x
M3 ABCD ABD ABD x
M4 ABCD BCD BC ACD
M5 ABCD x ABCD A
M6 ABCD B BCD x

5.2 Experiment 2: Grid Placement

The category for the grid experiment, labeled Grid ANY, serves to evaluate and help us understand the model’s
capacity to connect concepts in LSCENE with shape construction. If a model can generate an LSCENE, it
should theoretically be able to produce one that generates specific 3D shapes, given that foundational models
have demonstrated their ability to reason about mathematical concepts. Table 4 is our findings.

The initial surprising finding from the grid generation experiment is that GPT-4 barely outperforms GPT-3.5.
Upon analyzing the generation from GPT-3.5, it becomes apparent that it was capable of producing a complete
grid, albeit with spacing issues attributable to a misinterpretation of how the extent parameter affected the size
of the cubes. Figure 5 show how reducing the size of the cubes by half results in a correctly spaced 3D grid. For
comprehensive results by model or configuration, refer to Figure 6.

Table 4: LLM LSCENE Generation for Grid Placement (see Experiment 2)
Experiment Label Grid ANY Complete Grid Complete Grid with Space Syntax Error

M2 ACD D x x
M3 CD C x B
M4 ABCD BCD C x
M5 ABCD ACD x x
M6 ACD A x x

Gemini’s comprehensive understanding is evident in the output it produced after being provided with EXP:C.
Access to the Google generative AI API was not available at the time of this paper, so a simple case study was
performed on Gemini-1.5-pro. Gemini was able to fully understand LSCENE and use it to configure a grid and
spiral, as depicted in Figure 7. The reader can see that not only do we get the LSCENE JSON, we also get an
explanation of the parts; supposedly how the LLM thinks about the parts and why it selected them. It should
be noted that Gemini exhibited some laziness as it failed to complete the coordinates without a second agent
pass that requested the full coordinates. This behavior is consistent across all LLMs (Table 1).

Figure 5: Gpt3.5 with configuration EXP:C for (left) unspaced grid versus edited extent (right).



Figure 6: Grid tasks completion results across LLMs for Experiment 2.



Figure 7: Example Gemini-1.5-pro labeled output, i.e., LSCENE with explanation.



Table 5: LLM LSCENE Generation for Spiral Placement (see Experiment 3).
Experiment Label Spiral Any Spiral CLOSE Spiral Space Constraints Syntax Error

M2 AC x x D
M3 B B x D
M4 A x x BCD
M5 AD A x B
M6 D x x BC

5.3 Experiment 3: Spiral Placement

The spiral test is a step up in challenge compared to the grid generation task. While a 3D grid is a well-defined
concept with little room for interpretation, a spiral presents a fuzzier or more ambiguous concept, particularly in
3D space. Gemini-1.5-pro managed to construct a spiral, as illustrated in Figure 8, albeit with moderate success.
The figure captures the essence of the spiral, with curves looping around a central point. By testing LSCENE
requests with abstract tasks like spirals, we can identify areas where an LLM may encounter difficulties. Overall
results can be found in Table 5, with comparative analysis provided in Figure 10.

Figure 8: Gemini-1.5-pro spiral LSCENE generation attempt (see Experiment 3).

Figure 9: GPT-3.5 spiral attempt with EXP:B. The arrow is the order in which the spiral was created.



Figure 10: Spiral completion results across LLMs for Experiment 3.

5.4 Summary

The Anthropic Models demonstrated strong performance overall, with Claude-Opus completing the highest
number of tasks, as depicted in Figure 12. However, it’s noteworthy that Claude-Opus also exhibited the most
violations of the LSCENE syntax or general hallucinations. This raises the question: does this model tend to
take risks on uncertain tasks, resulting in more correct responses overall? If we can filter out incorrect guesses
while retaining accurate answers, this would arguably make it the most desirable model. Given that LSCENE
can reject invalid or incorrect markup through parsing alone, receiving occasional invalid or incorrect LSCENE
outputs isn’t a significant issue.

Upon analyzing the results, it’s apparent that all models performed similarly, as shown in Figure 13. However,
a closer examination of how each model utilized the LLM configuration, as illustrated in Figure 11, reveals some
interesting insights. For example, GPT-4 (M2) struggled to utilize the literal example (B) effectively, whereas
GPT-3.5 (M3) made more frequent use of it. Similarly, GPT-4 tended to employ the more abstract general
configuration (A) more often than GPT-3.5, a trend also observed in Claude-Haiku (M6). This suggests that
models with less creativity tend to rely more on literal examples than on abstract definitions or examples.
Notably, Claude-Opus (M4) excelled at making connections using configuration C, which combined elements
from both A and B. In fact, it leveraged this additional information to accurately generate a 3D grid with proper
spacing and the correct number of cubes, a feat unmatched by any other model.



Figure 11: Final LLM task completions by configuration.

Figure 12: Final LLM task completions.

Figure 13: LLM configuration success vs error.



6. MORE COMPLEX LSCENE EXAMPLE

Experiments 1 through 3 helped us understand various LLM pros and cons relative to generating controlled
targeted cases of relative spatial relations and syntactically correct LSCENE JSONs. Those experiments delved
into the intricacies of prompt-to-output for each LLM. In this section, we simply aim to qualitatively observe an
LLMs’ proficiency in generating more complex themed scenes, e.g., what we showed in Figure 2.

To this end, we utilize assets from the Quixel Megascan library. Specifically, the LLM is expected to accurately
reference assets in the prompt, utilize these referenced assets correctly within the LSCENE, and sample from
assets randomly based on the LSCENE description. To achieve this, we vary the temperature hyperparameter
– a scale supported by most models in Table 1 – which affects the determinism of the LLM (with 0 being fully
deterministic and 1.0 being most “creative”). More specifically, we assume than a user inputs a targeted biome,
such as grassy or rocky and arid. The LLM must consider this prompt when selecting relevant assets. Assets
are provided in name-only format, although advanced techniques may involve fully labeled descriptions for each
asset; such as Quixel labels or other AI-generated labels.

Example 1 is a grassy biome, where the object of interest in this dataset is teddy bear. Meaning, this
data could be used to train and/or evaluate an AI-based computer vision algorithm like object detection and
localization or semantic segmentation. This data was generated with Claude-Opus at a temperature of 0.9, with
a user request that asked for a grassy biome with man made clutter (2 wooden bears), with a list of paths to
Uassets in the current UE project. Four frames were arbitrarily grabbed, see Figure 14.

Figure 14: Example 1; Claude-Opus LSCENE with Configuration C, requesting a grassy biome, man made
objects (teddy bear), and given a single asset pack.

Example 2, a rocky biome, was run under the same conditions, only without man made clutter requested (the
teddy bear), but still referencing the same asset paths. Figures 15 and 16 show the results of Opus generating
a rocky biome LSCENE. The controlled variability of each biome is apparent, and with a data collection of
random camera poses and 1000s of frames to sample, the dataset becomes even more robust from a simple
prompt. Furthermore, Opus was given the same assets with each request, so the ability to pick and choose assets
corresponding to the prompt was achieved (while referencing in LSCENE).



Figure 15: Example 2, sample 1; Claude-Opus LSCENE with Configuration C, requesting a rocky biome and
given a single asset pack.

Figure 16: Example 2, sample 2; Claude-Opus LSCENE with Configuration C, requesting a rocky biome and
given a single asset pack.



7. CONCLUSION

In this article, we explored if large language models (LLM) can be used to translate user prompts into formal
3D scene descriptions for procedural synthesis of environments. Our focus centered on exploring different state-
of-the-art LLMs and methodologies for interacting with these models to generate LSCENE descriptions and
visualize them as datasets for computer vision using the Unreal Engine.

Through an example, we showcased the creation of different biomes—grassy versus rocky—leveraging high-
quality photometrically scanned assets from the Quixel Megascans library. This analysis was predominantly
qualitative. Additionally, we conducted three other experiments to quantitatively explore the performance of our
approach relative to the spatial placement of objects. Our findings highlighted notable differences among various
LLMs. For instance, it became evident that LLMs with lower levels of creativity tend to rely more on literal
examples rather than abstract definitions or examples. Notably, Claude-Opus emerged as a standout performer,
particularly when provided with generic LSCENE JSONs accompanied by documentation and examples featuring
various use cases. However, we note that these are specific findings and the LLM field is evolving constantly.
Additional research is required to discover more general philosophies of interacting with certain types of LLMs
or targeted papers are needed, e.g., an optimal method for just Claude-Opus.

In summary, our exploration underscores the potential of current-generation LLMs in generating formal scene
definitions, thereby facilitating the procedural generation of environments. This capability holds significant
relevance across a spectrum of tasks, ranging from film and gaming to more pertinent applications such as
generating controlled volume and diverse imagery for training and testing AI techniques.

8. FUTURE WORK

In conclusion, while this paper is an initial exploration of LLM-driven procedural generation, it highlights several
areas ripe for improvement. Future research will expand our methodology beyond LSCENE to include generating
LCAP JSONs for data capture. We also desire to develop more intricate scene (and capture) descriptions that
consider contextual nuances. To date, our current focus has been on generating scenes with more random and
diverse attributes, which aids in AI training and evaluation, particularly in computer vision contexts where
generalization is the goal. However, enhancements are required to tackle more complicated scenarios effectively
where context matters, e.g., cities, mazes, etc.

Moreover, our research was initiated with the aim of closing the loop on training and evaluating AI. Presently,
we have one component of that puzzle in place. Future endeavors will be geared towards bridging the gap between
these formal experiment definitions and formal language-based explanations of black box model performance. In
our previous work,25 Alvey et al. outlined a process for generating natural language-based descriptions of model
performance. Our aim is to intertwine these two research strands, enabling the effective utilization of LLMs as
search tools in both design and evaluation processes. Achieving this goal will necessitate the development of a
summarizer to consolidate findings across experiments and a sampler to guide future experimentation.

Finally, numerous other exciting avenues await exploration. One possibility is leveraging LLMs not just for
generating LSCENE descriptions, but also for generating the underlying sampler code, such as Unreal Engine
C++ code. Additionally, future work may involve incorporating RAG or specific LLM agents to effectively
handle large-scale asset databases. Another, and last, idea is to introduce additional features and constraints to
enhance the expressiveness and controllability of the language, thus further expanding its capabilities.
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