
Autonomous Drone Behavior via MCDM of UFOMap Layers

Daniel R. Buffuma, Andrew R. Bucka, Jack Akersa, Raub Camaionib, Matthew Deardorffb,

Derek T. Andersona, and Robert H. Luke IIIb

aDepartment of Electrical Engineering and Computer Science, University of Missouri,

Columbia, MO, USA
bU.S. Army DEVCOM C5ISR Center, Fort Belvoir, VA, USA

ABSTRACT

Coupling (semi-)autonomous drones with on-ground personnel can help improve metrics like mission safety, task
effectiveness, and task completion time. However, in order for a drone to be an effective companion, it needs to
be able to make intelligent decisions about what to do in a partially observable and dynamic environment in light
of uncertainty and multiple competing criteria. One simple example is where and how to move. These kinds of
continuous or waypoint-based decisions vary greatly from task to task, such as in the scenario of building a 3D
map of an area, getting a minimum number of pixels on objects for automatic target detection, exploring an area
around a search team, etc. While it is possible to implement each behavior from scratch, we discuss a flexible
and extensible framework that allows the specification of dynamic, controlled, and explainable behaviors based
on the multi-criteria decision making (MCDM), an aggregation task, of different UFOMap voxel map layers.
While we currently employ specific layers such as drone position, time since a voxel was last observed, minimum
distance to a voxel, and exploration fringe, future additional layers present the opportunity for the creation of
more complex and novel behaviors. Through testing with simulated flights, we have demonstrated that such
an approach is feasible for the construction of useful semi-autonomous behaviors in the pursuit of human-robot
teaming.

Keywords: aggregation, drone, autonomy, simulation, multi-criteria decision making, MCDM, voxel

1. INTRODUCTION

Unmanned aerial vehicles (UAVs or drones) have proven their real-world utility as reconnaissance and information
gathering platforms. Search and rescue missions, surveillance tasks, and general 3D mapping applications can
all benefit from having a mobile “eye in the sky.” In many cases, this drone is controlled manually by a human
operator, or is assigned a pre-defined flight route to follow. This has the potential to consume valuable human
resources or attention in situations where having a more capable drone companion would be beneficial.

Creating a general-purpose autonomous drone agent to assist with these types of tasks is a challenging
problem. Herein, we focus only on a subset of the full human-robot companion problem, which is to decide
where the drone should go next. This is typically done by assigning a list of one or more waypoints for the drone
to visit. Low-level control is handled by the drone hardware, but the high-level control of what location to visit
next can be the basis for some level of basic autonomy.

Consider a search and rescue scenario, where a person has gone missing and a drone is tasked with helping to
perform the search. While a pre-scripted flight pattern such as a lawnmower or orbit might be suitable for some
scenarios, they are unable to react to new information as it becomes available. Furthermore, those behaviors
are also not reactive to the terrain, e.g., achieve a desired ground sampling distance (GSD) for 3D mapping,
target detection, etc. In this work, we propose a multi-criteria decision-making (MCDM) framework for deciding
where to go using observed map features. The system can be tuned to favor different objectives depending on
the specific scenario.

Our approach builds upon previous work1 that explored using a simulation environment to define emergent
drone behaviors by aggregating 2D feature map layers. In the present work, we extend this framework by more

Further author information: (Send correspondence to drbk8v@umsystem.edu)

closely following the design considerations of real drone hardware and employing a real-time structure from
motion (SfM) method, EpiDepth,2 to estimate 3D depth instead of relying on simulated ground truth. Our
specific contributions are as follows.

• We utilize a high-quality photo realistic environment in the Unreal Engine3 and the drone simulation
plugins AirSim4 and Colosseum5 to develop and test autonomous behaviors.

• We use a ROS6 framework that can be deployed on embedded hardware to evaluate our methods in real-
world environments.

• We apply a real-time SfM algorithm, EpiDepth, to estimate 3D point clouds from image pairs selected
from a moving drone camera.

• We accumulate point cloud observations using UFOMap,7 a hierarchical probabilistic occupancy voxel map
server that provides real-time feature layers for decision-making.

• We define a MCDM method that includes user-defined preferences and constraints that guide and limit
where the drone can select as the next waypoint.

• We evaluate our approach with several variations and score it using multiple 2D and 3D metrics.

2. SYSTEM ARCHITECTURE

2.1 ROS Framework

The mapping and navigation framework that supports our decision-making agent is built using the Robot Operat-
ing System (ROS).6 ROS provides a set of tools and a message passing framework that allows complex behaviors
to be constructed using individual processing nodes that communicate with each other. This allows high-level
concepts to be designed using generic message types that can be implemented uniquely for specific hardware
platforms. By providing this flexibility, our method can be applied in both real and simulated environments with
minimal modification.

Each node in the ROS network runs independently and provides a specific functionality. They can publish and
subscribe to message topics, which may include pose information, camera images, 3D point clouds, and control
messages. In general, we assume that a drone (either real or virtual) can provide a stream of camera images
with corresponding pose information as a set of ROS topics. This stream can then be used to estimate depth
using the EpiDepth algorithm, which subscribes to these topics and publishes a 3D point cloud as another ROS
topic. The point clouds are aggregated into a 3D voxel grid using UFOMap, which can provide feature layers
(2D interpetation of map with specific layer determining values) using ROS service calls. A decision-making
node uses these feature layers to decide where the drone should go next. Finally, a control node oversees the
entire operation and uses the available ROS topics to send waypoint commands to the drone.

2.2 Unreal Engine

The process of developing autonomous drone behaviors is made significantly easier with access to a high-fidelity
simulation environment. The Unreal Engine3 provides a photorealistic rendering pipeline and game engine that
we use to design and test our algorithms before deploying in real-world environments. The Unreal Marketplace8

contains many prebuilt landscape environments and assets that we can utilize. The RealBiomes9 environment
(Fig. 1) is one such example that showcases a large open forest environment with many 3D scanned assets.

2.3 AirSim

The AirSim4 plugin for Unreal Engine provides a virtual drone platform for developing autonomous behaviors
and computer vision algorithms. Its successor, Colosseum,5 brings the legacy AirSim functionality to the modern
Unreal Engine 5. AirSim provides a ROS interface that publishes a virtual camera that can be controlled using
ROS commands. This makes the process of adapting to deployment systems relatively straightforward, as ROS
topics can be made to appear as they would with real hardware. We use a simple PID drone controller that takes
a target pose as input and moves the drone to the desired position. The virtual camera provides a real-time data
stream of camera poses, each with a corresponding color and depth image. The pose and color images simulate
what is available on a real drone, and the depth image provides a ground truth that is used for evaluation.

Figure 1. RealBiomes simulation environment rendered in Unreal Engine 5.

2.4 Pointcloud Reconstruction Via EpiDepth

As the drone moves through the environment, the sequence of camera images and poses are used to reconstruct a
3D representation of the scene using Structure-from-Motion (SfM). The EpiDepth algorithm2 is an SfM technique
that is specifically designed to perform stereo reconstruction for image pairs captured from a drone-mounted
camera. The typical movement patterns of a drone in flight are not always ideal for reconstruction, so EpiDepth
is used with a frame picking method10 to select the most suitable image frame pairs. It is assumed that the
camera intrinsic parameters are known, and that the extrinsic parameters can be provided by the simulator. In
real-world usage, the relative camera poses would be derived from the onboard GPS/IMU.

Given two images with known poses, the EpiDepth algorithm applies an image-space warping using the
epipolar geometry such that image features are aligned on corresponding rows. Feature matching between frames
is then used to determine per-pixel disparity. Using the known camera extrinsics, a 3D point cloud is projected
from the most recent camera frame and published to the ROS network. Our implementation uses several filters
and thresholds to avoid publishing unreliable features or points near the image edges. The resulting point cloud
can therefore have missing regions or be otherwise sparse, and the overall reconstruction quality is dependent on
the image quality and camera positions.

2.5 Map Server

Point cloud reconstructions are aggregated in world space using a discrete voxel-based representation. For this
work, we use the UFOMap framework7 to store voxel features in a hierarchical octree format. We specifically use
a voxel size of 1m3 to reduce computational complexity while still allowing for effective drone navigation. Each
voxel can store a feature vector with a number of attributes that are updated as new point clouds are added.
Primarily, the voxels represent occupancy in a probabilistic way, with values ranging between 0 and 1 to indicate
the likelihood that a given voxel is occupied or free space. Importantly, UFOMap also explicitly models voxels
that have never been observed as “Unknown” space, allowing for some computational efficiencies. The additional
attributes we store for each occupied voxel include color, time of observation, and distance to the camera.

Each point cloud that is published to the ROS network is added to the UFOMap using the corresponding
camera position to determine observability. A ray is cast to each point from the camera origin, and any inter-
secting voxels between the camera and the point are updated as “Free” space. The voxel containing the point

Figure 2. (a) Color and (b) Elevation map features.

is updated as “Occupied” and given the appropriate attributes. After several observations, the probabilistic
occupancy value of a voxel indicates the number of times it was observed as either free or occupied. The voxels
with an occupancy value greater than a user-defined threshold are then used to produce the feature maps used
for navigation and planning.

2.6 Map Feature Layers

Rather than consider every voxel as a waypoint candidate, we follow the assumption that a drone companion
maintains a consistent altitude. We therefore simplify the waypoint selection process by leveraging the 3D voxel
map generated by UFOMap to produce several unique 2D layers. The voxel columns from the 3D map are
condensed differently for each feature layer, and the specifics for each layer are outlined below. We expose the
feature layers derived by UFOMap so that they can be queried at any time. Although the map is updated after
each new point cloud observation, we typically process the features at a slower rate to manage the computational
load. Some feature layers are used for high-level decision-making behavior, whereas other map features may only
be used for visualization and low-level obstacle avoidance.

2.6.1 Color

The color feature layer (Fig. 2a) provides an easily interpretable top-down view of the environment. The color
of the highest-elevation voxel in each vertical column is used when constructing this layer. The primary purpose
is for user visualization and context, although it may support decision-making in future work.

2.6.2 Elevation

Each pixel in one of the feature maps represents a vertical column of voxels in the UFOMap. Within each column,
the maximum elevation is reported as the elevation feature map (Fig. 2b). This gives a digital elevation model
of the environment that can be used for path planning and obstacle avoidance. The height values correspond to
the elevation of the voxels in the color map.

2.6.3 Fringe

When prioritizing exploration, a drone may benefit from expanding the boundaries of its map in order to see
more areas. To convey this prioritization as a layer, we first determine which voxels on the 2D map are at the
current map’s boundaries – pixels with any unobserved neighbor receive a value of 1 and all other pixels start at
0. All pixels within the map’s boundaries then have their values set according to the following strategy: compute
the Euclidean distance transform using the original binary mask, calculate the distance from each pixel to its
nearest unobserved pixel, then invert the distance and scale it so values at 1 are only assigned to pixels on the
edge and smaller values belong to interior locations.

Figure 3. (a) Fringe, (b) Time Since Last Seen, and (c) Minimum Observed Distance map features.

To reduce the effect of noisy observations on the fringe feature, a morphological closing operator is applied to
fill in small unobserved regions. This helps to keep the strongest values in the fringe layer near the true frontier
of observation. An example of the fringe feature map is shown in Fig. 3a.

2.6.4 Time Since Last Seen

Upon the update of every voxel, we store the timestamp corresponding to that update as an aspect of the voxel
itself. Based on those timestamps, we can calculate each voxel’s age – voxels that are more recently observed
will have smaller ages compared to those observed earlier in drone’s flight. Given that certain scenarios call
for repeated monitoring of an area rather than pure exploration, we weight older voxels as higher compared to
those that have just been observed. In this sense, it is better to think of the layer as “time since last seen”. We
normalize this layer’s values to fall between 0 and 1 by subtracting the minimum voxel age from all values, then
dividing all values by the difference between the maximum and minimum ages. We then set all nonzero values
to 1 minus themselves to give older voxels higher values compared to younger ones. An example of this feature
map is shown in Fig. 3b.

2.6.5 Minimum Observed Distance

Certain use cases necessitate that a drone get as close of observations as possible for certain points or areas
in general. For example, it is well known that tasks such as target detection and semantic segmentation work
off certain conditions like standoff distance. A simpler example is found in the case where a user monitoring
a drone’s video feed wishes to see the world at a certain distance. We create a layer to aid these tasks via
the following: every time a voxel is observed, we save the distance from the drone to that voxel at the time of
observation. Our 2D minimum observed distance layer displays the minimum observed distance for the highest
elevation voxel in a particular column. Greater distances have higher values and thus higher priority compared
to points that have already been observed closer. We count any voxel with a minimum observed distance greater
than 100 as unobserved for this particular layer, and then normalize the layer to values between 0 and 1 by
dividing all values by 100. An example is shown in Fig. 3c.

2.7 Drone Navigation

2.7.1 Layer Aggregation

As discussed in the previous section, the drone currently has access to several unique feature layers. Each of
those layers can be added together since they have the same dimensions and all have values between 0 and 1.
For navigation we employ the latter 3 layers. Let Ff , Ft, and Fd represent the fringe, time since last seen, and
minimum observed distance layers respectively. Each image layer is scaled to the range [0, 1] such that more
desirable locations are assigned higher weight. Given user preference weights wf , wt, and wd, the linear weighted
aggregation of the features is given as

A0 = wfFf + wtFt + wdFd. (1)

Figure 4. (a) Map feature aggregation, combined with (b) Interest Zone Clipping, (c) Distance Weighting, and (d) Path
History Discount to select the next waypoint.

Here, A0 represents a combination of the different features that reflects the user’s preferences. Higher values
are considered to be more interesting places to go next and are good candidates for selecting the next waypoint.
An example of this feature aggregation layer is shown in Fig. 4a, which shows the features of Fig. 3 with equal
weights. Note that more complex aggregation strategies exist, but we favor a simple strategy with the goal of
allowing the human user to have clear control over the metrics the drone’s flight path maximizes.

2.7.2 Area of Interest

When it comes to any drone mission, one of the first things a user decides on is the area that the drone can
explore. While an ideal behavior would prevent it, leaving a drone’s search area unbounded could lead it to
travel too far from the user’s position. Our experiments focus on the case where a user launches the drone, and
so we configure the drone’s bounds to be within a certain radius around the user’s position. Multiplying this
layer with the final decision layer ensures that the drone cannot select any waypoints outside of the specified
radius of interest. The layers themselves are not affected, so we can still get information for voxels outside the
region of interest (which can still affect the drone’s waypoint selection by affecting voxel values for the fringe
layer). This interest zone clipping effectively limits the locations where the next waypoint can be selected. An
example area of interest with a radius of 100 m used in our examples is shown in Fig. 5a, and an example of
the resulting clipped aggregation layer is shown in Fig. 4b. Given an interest zone image Z with valid regions
assigned 1 and all other pixels set to 0, the updated aggregation layer A1 is defined as

A1 = Z ⊙A0, (2)

where ⊙ is the element-wise matrix multiplication operator (Hadamard product).

2.7.3 Drone Position

In order to promote efficient exploration, it makes sense to avoid visiting points that are too far from the drone
– by staying fixed on a faraway point, the drone may miss out on visiting closer areas that grow to high interest
as the map fills out more. Similarly, it is inefficient to explore points that are too close to the drone, especially
since the drone may get stuck in an area if the map outside that area doesn’t have a chance to populate. In order
to mitigate these two issues, we create a circle around the drone’s position that allows for the configuration of
two parameters: radius of exclusion and radius of inclusion. Anything within the exclusion radius is zeroed out,
and the region between the inclusion and exclusion radii is linearly interpolated between 0 and 1 such that the
highest values are just outside the exclusion radius. An example is shown in Fig. 5b. When multiplied with the
final decision layer, this layer simultaneously helps to ensure the drone avoids selecting waypoints that are too
close to the current drone position or too far away, with a preference for closer points.

Figure 5. Drone position constraints to be used when selecting the next waypoint. (a) Area of Interest. (b) Drone Distance
Preference. (c) Path History.

Given an exclusion radius re and an inclusion radius ri such that re < ri, the drone distance preference layer
P is defined such that a location cd with distance d from the current drone position is assigned a value as

cd =

1−
d− re

ri − re
, re < d < ri

0 , otherwise
. (3)

The aggregation layer A1 is updated by multiplying with this new layer P , giving

A2 = P ⊙A1. (4)

An example of the resulting distance weighted aggregation layer is shown in Fig. 4c.

2.7.4 Path History

One additional factor that can influence waypoint selection is the history of where the drone has already been.
To promote visiting new locations and not simply revisiting the same places over again, we keep track of the
drone’s path history. The path history layer, H, is initialized with every location set to 1. Each time the feature
layers are computed, all points within the exclusion radius re of the current drone position are set to 0. Then,
all other points less than 1 are incremented by a small value (n = 0.01). This gives a trail of the path history
that fades over time to encourage the drone to explore new areas. An example of the path history layer is shown
in Fig. 5c. The distance weighted aggregation layer A2 is multiplied by the path history layer H to give the final
aggregated feature layer,

A3 = H ⊙A2. (5)

An example of this final feature layer is shown in Fig. 4d.

2.7.5 Selecting a Waypoint

After aggregating the feature layers and applying interest zone clipping, distance weighting, and the path history
discount, the resulting aggregated feature layer is used to select the next waypoint. A small amount of noise
is added to A3 to break ties, and the point with the highest value is chosen as the next waypoint. This point
is then published as a ROS topic, which is available for the ROS controller to use when selecting the next
waypoint. Because of the limitations and capabilities of real drone hardware, the drone will travel all the way
to each selected waypoint unless interrupted manually or for obstacle avoidance reasons. This means that new
information observed en route will not change the destination until the current waypoint is reached. This helps
prevent erratic and oscillating behavior and is one of the main reasons to discourage selecting waypoints far from
the current drone position.

3. EXPERIMENTS

To demonstrate our proposed MCDM method, we perform several flights in a simulated environment with
different preference weights and compare the results with pre-scripted behaviors. For these experiments, we use
the Scots Pine Forest map11 from the RealBiomes9 asset pack. For each experiment, we run the controller for
10 minutes and evaluate the resulting behavior. We compare the runs using several scoring metrics and give a
qualitative assessment of the results. We have flown the current system on a real drone, but stick with simulation
for this paper because it allows for ground truth comparison and ease of analysis.

3.1 Scoring Metrics

The following quantitative metrics are some possible ways of interpreting and comparing the outcomes of a given
flight. In general, we are interested in how well a particular movement pattern or behavior is able to construct
a map with the desired properties. These metrics are not exhaustive, and certain qualitative properties of each
flight can be compared as well.

3.1.1 Percent of Area Mapped

This metric measures the proportion of pixels in the region of interest that were observed and added to the map.
Let Z be the zone of interest image, with a value of 1 in the scoring region and 0 elsewhere, and let M be the
top-down map layer, with a value of 1 where a voxel exists in the UFOMap and 0 elsewhere. The percentage of
area mapped metric is defined as

Qa =
100 · |M ∧ Z|

|Z|
. (6)

3.1.2 Average Time Since Observed

In general, we prefer an up-to-date map where each location has been observed recently. The time since last
seen feature layer, Ft is scaled such that the most recently observed locations have a value of 0 and the oldest
locations have a value of 1. Reverting this feature to un-normalized values gives the time layer, T , where each
pixel represents the number of seconds since it was last observed. To evaluate this metric, we consider only
mapped pixels that appear in the scoring region (M ∧ Z). Of these, the average time since observed is

Qt =
1

|M ∧ Z|

∑

i∈(M∧Z)

Ti. (7)

3.1.3 Average Minimum Observed Distance

Map quality is typically better when observed from a close distance, allowing for more image features and better
reconstruction. The minimum observed distance feature layer, Fd is scaled such that points that have been
observed from the closest distance have a value of zero and the farthest points have a value of 1. Reverting this
feature to un-normalized values gives the observed distance layer, D, where each pixel represents the minimum
observed distance of the highest elevation voxel in a column. Note that this value is capped at 100 m, as depth
predictions farther than this are not added to the UFOMap. To evaluate this metric, we consider only pixels
that have been mapped and appear in the scoring region (M ∧ Z). Of these, the average time since observed is

Qd =
1

|M ∧ Z|

∑

i∈(M∧Z)

Di. (8)

3.1.4 3D Metrics

To evaluate the overall quality of the constructed map, we compare the 3D UFOMap produced using SfM
methods to the ideal reconstruction produced using ground truth depth from simulation. Let VSfM and VGT be
two binary voxel maps, generated by applying a threshold to the runtime UFOMap and a post-processed ground
truth reconstruction respectively. The 3D recall metric evaluates the proportion of occupied voxels in VSfM that
are within a distance dv of an occupied voxel in VGT. Formally, this is defined as

Qr =

∣

∣

∣

∣

{

v ∈ VSfM

∣

∣(∃u)
[

u ∈ VGT ∧ ||v − u||2 < dv
]}

∣

∣

∣

∣

∣

∣VGT

∣

∣

. (9)

We also evaluate the 3D MSE, which measures the average distance of an occupied voxel in VSfM to a true voxel
in VGT. This is given as

Qm =
1

|VSfM|

∑

v∈VSfM

min
u∈VGT

||v − u||2. (10)

We use a threshold value of 0.7 when determining the occupied voxels in VSfM and a distance value of dv = 4 m,
which provides some margin for reconstruction error but generally captures how well the estimated map matches
the ground truth. For a more exhaustive evaluation of 3D evaluation metrics, the reader can refer to our recent
work in 12.

3.2 Results

We ran a total of six different experiments with the same environment setup. The first four experiments use
different preference weights for the MCDM feature layer aggregation and the last two use pre-defined movement
patterns as a comparison. For each experiment, we show images of the mapped area, flight path, and the final
feature layers used for scoring. Fig. 6 shows the 2D metrics plotted over time, and Table 1 shows the numerical
results. An example of the final 3D UFOMap generated at the end of a run is shown in Fig. 7.

Figure 6. Results of the different behaviors over time. The left figure shows the percent of area mapped metric (Qa), the
center figure shows the average time since observed metric (Qt), and the right figure shows the average minimum observed
distance metric (Qd).

3.2.1 Balanced MCDM Weights

For the first experiment, we set wf = 0.3, wt = 0.3, and wd = 0.3. The results are shown in Fig. 8. We note that
after taking off in the center of the region of interest, the drone selects waypoints as described in Section 2.7.5
and moves around the map. From Table 1, we see that this behavior did well across all metrics, but was not the
best in any single one. Overall, it incorporates all of the objectives and performs reasonably well.

Table 1. Quantitative Scoring Metrics for the Different Behaviors

Behavior % Obs. ↑ Avg. Time (s) ↓ Avg. Dist. (m) ↓ 3D Recall ↑ 3D MSE (m) ↓

Balanced 87.7 197 55.3 0.929 1.082
Exploration 88.8 205 54.9 0.937 1.083

Time 83.4 191 57.7 0.916 1.122
Distance 87.2 225 56.3 0.920 1.0617

Lawnmower 86.8 228 54.5 0.951 0.942
Orbit 42.0 128 62.8 0.957 1.269

Figure 7. UFOMap reconstruction after completing the run with Balanced MCDM weights. (a) Using SfM methods to
estimate depth. (b) Ground truth using known depth from simulation.

3.2.2 Exploration Only

For the next experiment, we set wf = 1, wt = 0, and wd = 0. This results in the drone only selecting waypoints
that are near the edge of the observed space and gives the highest overall observation percentage. The results
are shown in Fig. 9.

3.2.3 Time Feature Only

For the next experiment, we set wf = 0, wt = 1, and wd = 0. This results in the drone working to keep all
locations recently observed. The average time since last observed feature is the lowest of the MCDM methods,
outperformed only by the Orbit behavior, which had a much lower observation percentage. The results are shown
in Fig. 10.

Figure 8. Results from using balanced MCDM weights (wf = 0.3, wt = 0.3, and wd = 0.3).

Figure 9. Results from using the exploration MCDM weights (wf = 1, wt = 0, and wd = 0).

Figure 10. Results from using the exploration MCDM weights (wf = 0, wt = 1, and wd = 0).

3.2.4 Distance Feature Only

For the next experiment, we set wf = 0, wt = 0, and wd = 1. This results in the drone selecting waypoints
that minimize the observed distance to locations in the map. The results are shown in Fig. 11. Although this
method did not have the lowest average distance metric, it did have the lowest 3D MSE score of the MCDM
methods. This feature can be challenging to optimize for when the drone is flying at a fixed altitude over terrain
with varying elevation.

3.2.5 Lawnmower Pattern

The next experiment shows a typical way that an environment might be scanned with a drone using a regular
grid pattern. This experiment used a pre-scripted set of waypoints and did not utilize our MCDM framework.
The results are shown in Fig. 12. This behavior was scored using the same evaluation metrics, and we see that
it has the best 3D reconstruction error and the lowest average observation distance. This can be attributed to
the regular movement pattern that is ideal for general 3D mapping tasks.

3.2.6 Orbit Pattern

The last experiment shows an alternate orbit pattern that might be used for surveillance tasks. After taking off
in the center of the region of interest, the drone follows a pre-scripted path to move to the edge of the region
and then orbit around it, while maintaining look focus at the center. The results are shown in Fig. 13. This
results in a significantly lower observation percentage, as the drone is never mapping the area directly below it.

Figure 11. Results from using the exploration MCDM weights (wf = 0, wt = 0, and wd = 1).

Figure 12. Results from using the pre-scripted lawnmower flight pattern.

Figure 13. Results from using the pre-scripted orbit flight pattern.

However, the average time since observed is much lower than the other methods, indicating that it could be a
useful approach for maintaining an up-to-date map.

4. CONCLUSION AND FUTURE WORK

In this paper, we proposed and analyzed a framework with the motivation of improving autonomous waypoint
selection of a drone for the case of human-robot teaming. We focused on analyzing behaviors implemented
via fixed weighted sums of three distinct feature layers. We saw that different weightings result in measurable
differences in the maps produced from simulated flights, especially when comparing results at specific flight
durations. There were also measurable differences in how the behavior based on these layers performed when
compared to the orbit and lawnmower fixed behaviors. These results support our vision that the different layers
can be conducive to different tasks – and that a user can easily understand the configurations they specify. For
the future, we envision a behavior in which the weight given to each layer is changed over time. A user may wish
to start a mission with an exploratory mapping behavior, but then switch to more of a patrol behavior once an
area has been sufficiently mapped. Additionally, a user can integrate feature layers conducive to their specific
task to achieve more effective flight patterns.

We foresee several opportunities for improving our framework in the near future. The most immediate
addition we see is to allow the drone to deviate from a waypoint in the case that a different point becomes more
interesting while in motion. Doing so could ensure the drone focuses on mission-critical areas as soon as possible
– if the drone sees a person in need of rescue at point B while flying to a less interesting point A, it should
immediately investigate the former. A different opportunity for improvement is the use of reinforcement learning
to more intelligently craft drone behavior. Doing so could shed light on the ideal weightings that maximize
desired metrics, and even figure out how weights should change over time as proposed above. However, a
solution crafted solely from reinforcement learning runs the risk of losing the explainable aspect that our system
currently possesses. Other future work revolves around making our platform more similar to real scenarios. One
fault in our experimental scenarios is that the drone is at a constant altitude. More sophisticated scenarios
require altitude adjustment to allow for the avoidance of obstacles and to minimize the observed distance of
objects at varying elevations. Therefore, we see including a collision avoidance mechanism and a more subtle
altitude adjustment functionality as important steps for making this framework capable in real world scenarios.

REFERENCES

[1] A. Buck, R. Camaioni, B. Alvey, D. T. Anderson, J. M. Keller, R. H. L. III, and G. Scott, “Unreal
engine-based photorealistic aerial data generation and unit testing of artificial intelligence algorithms,”
in Geospatial Informatics XII (K. Palaniappan, G. Seetharaman, and J. D. Harguess, eds.), vol. 12099,
p. 1209908, International Society for Optics and Photonics, SPIE, 2022.

[2] R. Camaioni, R. H. Luke, A. Buck, and D. T. Anderson, “EpiDepth: A real-time monocular dense-depth
estimation pipeline using generic image rectification,” in Geospatial Informatics XII, vol. 12099, pp. 101–114,
SPIE, May 2022.

[3] “Unreal Engine.” https://www.unrealengine.com/. (Accessed: 26 March 2024).

[4] “AirSim.” https://github.com/microsoft/AirSim. (Accessed: 26 March 2024).

[5] “Colosseum.” https://github.com/CodexLabsLLC/Colosseum. (Accessed: 26 March 2024).

[6] “Robot Operating System (ROS).” https://ros.org. (Accessed: 26 March 2024).

[7] D. Duberg and P. Jensfelt, “UFOMap: An Efficient Probabilistic 3D Mapping Framework That Embraces
the Unknown,” arXiv:2003.04749 [cs.RO], Mar. 2020.

[8] “Unreal Marketplace.” https://www.unrealengine.com/marketplace/en-US/store. (Accessed: 26
March 2024).

[9] “RealBiomes.” https://www.realbiomes.com/. (Accessed: 26 March 2024).

[10] A. R. Buck, J. D. Akers, D. T. Anderson, J. M. Keller, R. Camaioni, M. Deardorff, and R. H. Luke, “Frame
selection strategies for real-time structure-from-motion from an aerial platform,” in 2023 IEEE Applied
Imagery Pattern Recognition Workshop (AIPR), pp. 1–8, 2023.

[11] “Scots Pine Forest Biome.” https://www.realbiomes.com/store-pine. (Accessed: 29 March 2024).

[12] J. Akers, A. Buck, R. Camaioni, D. T. Anderson, R. H. L. III, J. M. Keller, M. Deardorff, and B. Alvey, “Sim-
ulated gold-standard for quantitative evaluation of monocular vision algorithms,” in Geospatial Informatics
XIII (K. Palaniappan, G. Seetharaman, and J. D. Harguess, eds.), vol. 12525, p. 125250A, International
Society for Optics and Photonics, SPIE, 2023.

https://www.unrealengine.com/
https://github.com/microsoft/AirSim
https://github.com/CodexLabsLLC/Colosseum
https://ros.org
https://www.unrealengine.com/marketplace/en-US/store
https://www.realbiomes.com/
https://www.realbiomes.com/store-pine

	Introduction
	System Architecture
	ROS Framework
	Unreal Engine
	AirSim
	Pointcloud Reconstruction Via EpiDepth
	Map Server
	Map Feature Layers
	Color
	Elevation
	Fringe
	Time Since Last Seen
	Minimum Observed Distance

	Drone Navigation
	Layer Aggregation
	Area of Interest
	Drone Position
	Path History
	Selecting a Waypoint

	Experiments
	Scoring Metrics
	Percent of Area Mapped
	Average Time Since Observed
	Average Minimum Observed Distance
	3D Metrics

	Results
	Balanced MCDM Weights
	Exploration Only
	Time Feature Only
	Distance Feature Only
	Lawnmower Pattern
	Orbit Pattern

	Conclusion and Future Work

