Mizzou INformation and Data FUsion Lab (MINDFUL)

Designing Reliable Navigation Behaviors for Autonomous Agents in Partially Observable Grid-world Environments

Andrew R. Buck, Derek T. Anderson, James M. Keller, Cindy Bethel, and Audrey Aldridge

University of Missouri

IEEE WCCI 2024 (IJCNN)

Department of Electrical Engineering and Computer Science

Motivation and Overview

How does an agent decide where to go?

- Needs to perform some task
- Unknown environment
- Explainable behavior

Can we use a grid-world to study this problem?

Prior Work

Myopic Monte-Carlo for TSP (CEC 2016)

Computational Mental Map (Ph.D. Dissertation 2018)

Human-Robot Teaming Game (SPIE 2023)

Today: Target Detection Grid-World

How do we build agents that can navigate reliably?

We designed a custom grid-world environment to study this.

Can we support learning behaviors via RL?

We look at how observations are mapped to actions.

Two approaches today:

- Linear weighted policy
 - Exploration vs. Exploitation
- Neural Net policy
 - U-Net learns where to go

Grid-world Environment

• We used a 64x64 grid with procedurally generated features.

- Cellular automata used to generate walls and terrain
- Agent and targets placed randomly

The agent gets a partial observation of the environment.

- Can move up, down, left, or right
- Looking to find the "true target" among several "false alarms"

Observations

- The agent gets a set of binary feature layers as a local observation.
- Target detection depends on distance and terrain type.
 - Hard to detect at long range
 - Easier to detect in meadow than forest

Persistent Feature Layers

• As the agent moves, the local observations are aggregated into persistent feature layers.

Multi-Criteria Decision Making

• A linear weighted policy explicitly balances exploration and exploitation.

Observed Targets

Distance to Targets (D_T)

Exploration vs Exploitation

Training a U-Net

• We train a U-Net to learn to predict the distance map.

From Prediction to Action

NN Policy Example 1

NN Policy Example 2

Comparing Methods

NN Policy: 282 Steps

Exploitation Policy ($\theta = 1$): 880 Steps

Conclusions and Future Work

• We compared two types of policies for navigating in grid-world environments:

- A linear policy that uses manually defined features and weights
- A NN policy that predicts where to go next

Both policies use a value map to direct agent actions.

High-level goals are achieved through low-level actions.

The NN policy learns from demonstrated behavior.

- Environment features are saved in a "Mental Map".
- The network can learn to recognize desirable locations.

The target detection problem can be extended to more complex problems.

- Rewards could be tied to terrain type or other MCDM objectives.
- Multi-agent settings can explore the potential for human-robot teaming.

Thank You!