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 How does an agent decide where to go?

▪ Needs to perform some task

▪ Unknown environment

▪ Explainable behavior
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 Can we use a grid-world to study this problem?

Types of Grid-WorldsAbstract Realistic

MiniGrid UFOMapComputational Mental MapPartially Observable TSP Target Detection Game
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Myopic Monte-Carlo for TSP

(CEC 2016)

Computational Mental Map

(Ph.D. Dissertation 2018) Multi-Objective Fuzzy Paths (FUZZ-IEEE 2019)

Human-Robot Teaming Game (SPIE 2023)Voxel Map Feature Layers for UAV (SPIE 2022)



 How do we build agents that can navigate reliably?

▪ We designed a custom grid-world environment to study this.

 Can we support learning behaviors via RL?

▪ We look at how observations are mapped to actions.

 Two approaches today:

▪ Linear weighted policy
▪ Exploration vs. Exploitation

▪ Neural Net policy
▪ U-Net learns where to go
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 We used a 64x64 grid with procedurally generated features.
▪ Cellular automata used to generate walls and terrain

▪ Agent and targets placed randomly

 The agent gets a partial observation of the environment.
▪ Can move up, down, left, or right

▪ Looking to find the “true target” among several “false alarms”
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 The agent gets a set of binary feature layers as a local observation.

 Target detection depends on distance and terrain type.

▪ Hard to detect at long range

▪ Easier to detect in meadow than forest
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 As the agent moves, the local observations are aggregated into persistent feature layers.
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 A linear weighted policy explicitly balances exploration and exploitation.
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Exploration

𝑤𝑡 = 1, 𝑤𝑢 = 2, 𝑤𝑝 = 1

644 Steps

Exploitation

𝑤𝑡 = 2, 𝑤𝑢 = 1, 𝑤𝑝 = 1

322 Steps

Balanced

𝑤𝑡 = 1, 𝑤𝑢 = 1, 𝑤𝑝 = 1

1005 Steps

Averaged over 100 environments, 

exploitation consistently does best.



Training Loss
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 We train a U-Net to learn to predict the distance map.

Persistent Feature Layers
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Exploration Policy (𝜃 = −1): 578 Steps Exploitation Policy (𝜃 = 1): 880 StepsNN Policy: 282 Steps

Compared methods in 100 

different environments



 We compared two types of policies for navigating in grid-world environments:

▪ A linear policy that uses manually defined features and weights

▪ A NN policy that predicts where to go next

 Both policies use a value map to direct agent actions.

▪ High-level goals are achieved through low-level actions.

 The NN policy learns from demonstrated behavior.

▪ Environment features are saved in a “Mental Map”.

▪ The network can learn to recognize desirable locations.

 The target detection problem can be extended to more complex problems.

▪ Rewards could be tied to terrain type or other MCDM objectives.

▪ Multi-agent settings can explore the potential for human-robot teaming.
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