
Designing Reliable Navigation Behaviors for
Autonomous Agents in Partially Observable

Grid-world Environments
Andrew R. Buck, Derek T. Anderson, and James M. Keller

Dept. of Electrical Engineering and Computer Science
University of Missouri
Columbia, MO, USA

Email: {buckar, andersondt, kellerj}@missouri.edu

Cindy Bethel and Audrey Aldridge
Dept. of Computer Science and Engineering

Mississippi State University
Starkville, MS, USA

Email: cbethel@cse.msstate.edu, ala214@msstate.edu

Abstract—Deciding where to go is one of the primary chal-
lenges in designing an agent that can explore an unknown
environment. Grid-worlds provide a flexible framework for repre-
senting different variations of this problem, allowing for various
types of goals and constraints. Typically, agents move one cell at
a time, gathering new information at each time step. However,
recomputing a new action after each step can lead to unintended
behaviors, such as indecision and forgetting about previous goals.
To mitigate this, we define a set of persistent feature layers
that can be used by either a linear weighted policy or a neural
network approach to identify potential destination locations. The
outputs of these policies are processed using knowledge of the
environment to ensure that objectives are met in a timely and
effective manner. We demonstrate how to train and evaluate a
U-Net model in a custom grid-world environment and provide
guidance and suggestions for how to use this approach to build
complex agent behaviors.

I. INTRODUCTION

Grid-world environments have often served as benchmark
problems for designing intelligent behaviors. From simple
navigation tasks to games of great complexity, grid-worlds are
adaptable to many different domains. The specifics of each
grid-world problem are defined on a case by case basis, but
in general, they consist of one or more agents placed on a
grid of cells that can move about and possibly interact with
the environment. There is usually a goal for each problem
instance, and a common task is to develop a policy for each
agent that will optimize for the stated goal.

Some examples of grid-world environments are the Mini-
grid library [1] and the BabyAI platform [2], which have
been used to develop and test reinforcement learning (RL)
algorithms. One characteristic of these environments is that
they are typically abstract, not necessarily representing real
environments or observation models, but rather serving to
study the sequential decision-making problem. Often, these
environments are used to visually represent a simplified and
discrete state space, and to gain insight into the inner workings
of an algorithm using a problem that is intuitive and accessible.

Although grid-worlds are often used as toy or benchmark
problems, their general expressiveness makes them ideally
suited to represent certain types of real-world tasks as well.

Robotic navigation tasks can be studied using grid-worlds
where the agent may be a ground robot or an Unmanned
Aerial Vehicle (UAV). Occupancy maps [3] can be seen as
a type of grid-world environment where the state of each cell
(Free or Occupied) is initially unknown. Other representations
include using fuzzy sets to represent possibilistic uncertainty
maps [4] and 3D voxel representations such as OctoMap [5]
and UFOMap [6].

A common task in a grid-world environment is to decide
where to go next. In the more abstract grid-worlds, this is often
implemented on a step-by-step basis, with the agent deciding
on a movement action (up, down, left, or right) at each time
step. In some of the more realistic environments, movement is
specified using waypoints and path planning. In an RL setting,
this corresponds to the action space of the environment. A
small action space with only four possible actions leads to
scenarios that require many steps, and many opportunities to
demonstrate “unintelligent” behavior. Rewards in this context
tend to be sparse, and it is common to see RL algorithms take
a long time to train if the size of the environment grows large.
Alternatively, using waypoints as actions can lead to very
large action spaces and requires some intermediate method
to translate high-level commands into low-level step-by-step
movements. One possible strategy employed by Li et al. [7]
is to use dedicated mapping, decision, and planning modules
such that once an RL algorithm has picked a destination, the
task of planning a route and navigating there is managed by
other optimized planners, such as A*.

Herein, we design a custom grid-world environment to study
how agent movement can be defined in terms of step-by-step
actions while still adhering to an overall goal that may change
with the discovery of new information. To accomplish this,
we compute and maintain a set of persistent feature layers that
store the agent observations as a type of “mental map”. This is
then used to determine where the agent should go in order to
accomplish a specific task. We first introduce a linear weighted
policy that aggregates user-supplied preferences. Using this
as a baseline, we then train a U-Net model [8] to learn
how to map the features of the environment and the agent’s



(a) (b)

(c) (d)

Fig. 1. Grid-world environment creation. (a) Grid cells are defined as either
FREE (white) or WALL (black) using cellular automata rules and region
dilation to create a single fully-connected cave-like map. (b) Terrain types
such as MEADOW (tan) and FOREST (green) can be added to the free cells
using additional cellular automata rules. (c) The agent (red circle) and targets
(blue crosses) are placed in the map randomly. (d) The agent receives an
observation based only on the parts of the map that are visible from the
agent’s location. Unobserved grid cells are masked out in gray. (Agent and
target symbols are enlarged for clarity.)

mental map into high-level waypoint actions. These are then
processed and applied as low-level movement actions.

The problem setting we consider is the target detection
problem, which can be considered to be a variation of the
traveling salesman problem or the search and rescue problem.
We use procedurally generated environments similar to those
in [9] and extend that work with a more generalized solution
algorithm. The resulting control policy could be applied in
synthetic 3D scenes using the voxel grid mapping approach
of [10]. The U-Net policy we propose is adaptable and can be
fine-tuned for specific problem types using an RL method.

The remainder of this paper is as follows. Section II
describes the grid-world environment used in this work. Sec-
tion III introduces the linear weighted policy for solving the
target detection problem. Section IV describes the neural net-
work policy and explains the training and evaluation methods.
Finally, Section V gives conclusions and plans for future work.

II. GRID-WORLD ENVIRONMENT

A. Environment Description

The grid-world environment we use in this work consists
of a square grid of 64× 64 cells, each of which can represent
one environmental state. The two most basic states are FREE

and WALL, which indicate traversable cells and obstacles
respectively. In some scenarios, a FREE cell can be further
classified with a terrain type of MEADOW or FOREST. This
naming convention serves to contextualize the problem as one
of exploring a relatively large outdoor space, but could easily
be adapted to represent other types of terrain.

An episode of the “game” consists of a single agent explor-
ing the grid-world environment in search of some goal. (Multi-
agent versions of the game are planned for future work.) The
agent is located in one of the FREE environment cells and can
move in four directions: up, down, left, or right. Each time
step, the agent selects one of these four actions and moves to
an adjacent cell. There is no uncertainty in the outcome of a
movement action, and attempts to move into a WALL result
in the agent staying in place.

Targets are placed throughout the environment and serve
as potential goals for the agent. One target is designated as
the true target and the rest are considered to be false alarms.
An agent moving into the grid cell of the true target ends
the episode, whereas an agent moving into the cell of a false
alarm clears the target from the map, but does not end the
episode. Targets may not always be detected by the agent and
can require multiple observations to identify. This is meant to
simulate the way in which an object detection algorithm may
fail to recognize a true target, or mis-classify a false alarm.
The probability of detection for true targets and false alarms
is a function of the distance to the agent and the terrain type
of the grid cell the target is placed in.

Rewards are provided according to the episode specification
and can be changed to elicit different behaviors. Herein, we
count the number of steps it takes the agent to find the true
target by giving a reward of −1 for each step until episode
termination. In more complex versions of the problem, rewards
could be used to influence the types of terrain that the agent
prefers to travel in, or the relative importance of clearing false
alarms. For example, the agent could receive a reward of −1
for each step that ends in MEADOW, a reward of −10 for each
step that ends in FOREST, a reward of +100 for clearing a false
alarm, and a reward of +1000 for finding the true target.

B. Environment Generation

Each episode of the game consists of a randomly generated
instance of the environment, based on a set of user-defined
parameters. The environment creation process follows that
of [9], and consists of several steps, starting with a cellular
automata phase to define the FREE and WALL cells. During
this phase, the cellular evolution rules are alternately applied
with region dilation until a single fully-connected FREE region
is created, such as in Fig. 1a. Some post-processing clean up
ensures that the outer border states are WALL and diagonal
gaps are filled in. The result is a cave-like map with both
winding passages and large open areas that is well-suited for
exploration problems.

Following the creation of the cave walls, some environment
instances continue to define the MEADOW and FOREST terrain
types by applying another round of cellular automata rules as



Fig. 2. An observation provided by the grid-world environment. The rendered observation (intended for human viewing) is shown on the left and the six
binary feature maps used for computation are shown on the right.

Fig. 3. Probability of detecting true targets and false alarms in both MEADOW
and FOREST terrain, given the agent’s distance from the target.

shown in Fig. 1b. In this case, the existing walls are used as
boundaries, and the regions are not required to be connected.

Lastly, the environment is populated with the agent and
10 targets. The rules governing their placement can vary for
each scenario, but typical methods include tabu-disk sampling,
in which all sampled locations have a minimum separation,
and random walk sampling, where targets are more likely to
be clustered together in a group. Fig. 1c shows an example
placement of an agent and targets.

C. Observations

The state of the environment is represented by the collective
states of each grid cell, the position of the agent, and the
locations of the remaining targets. However, the full state is not
directly available to the agent. Instead, the agent receives an

observation of the environment based on its current location.
Any grid cell that is visible by line-of-sight from the agent’s
position without passing through any WALL cells is considered
visible. The properties of all visible cells (including the terrain
type, agent location, and any visible targets) are included as
part of the observation (Fig. 1d).

The environment provides observations in the form of
binary feature masks, indicating the presence or absence of
a specific property. The typical feature layers are Walls, Free,
Targets, Agent, Meadow, and Forest as shown in Fig. 2. These
feature maps represent the instantaneous state of the environ-
ment and do not explicitly contain any historical information.

Targets are checked at the time of observation to determine
if they are detected or not. We use a probabilistic model based
on the agent’s distance to the target and the terrain type of the
grid cell containing the target. The intent is for true targets
and false alarms to be harder to detect and distinguish at far
distances, and also easier to find in MEADOW than in FOREST.
For a true target ttt, we define the probability of detection at
a given distance d as,

p
(
ttt | d

)
=

{
1, d < a

1
b(d−a)+1 , d ≥ a

, (1)

where we set a = 5 and b = 0.2 for MEADOW, and a = 3
and b = 0.5 for FOREST. For a false alarm target tfa, we use

p
(
tfa | d

)
=

{
0, d < 1

0.8
b(d−1)+1 , d ≥ 1

, (2)

where we set b = 0.1 for MEADOW, and b = 0.2 for FOREST.
Plots of these functions are shown in Fig. 3.

III. A LINEAR WEIGHTED POLICY

One of the simplest ways to approach “solving” this game
is to define an explicit policy for how to select actions given



Fig. 4. An observation provided by the grid-world environment 60 steps after the starting observation in Fig. 2. The rendered observation (intended for human
viewing) is shown on the left and the six binary feature maps used for computation are shown on the right.

(a) (b)

(c) (d)

(e) (f)

Fig. 5. Persistent feature layers that are updated after each step and used
as input for the neural network policy. (a) Occupancy map, MO . (b) Path
history, MP . (c) Meadow, Mt1. (d) Forest, Mt2. (e) Target history, MT . (f)
Agent position, MA.

any observation. Fundamentally, this is an ill-posed problem
in the sense that the best strategy depends on the previous
observations. Consider the observation in Fig. 4, received 60
steps after the observation in Fig. 2. Without any form of
history, the agent has no way of remembering parts of the
map after it has left. As the agent explores the environment,
it acquires new information and will build an internal “mental
map” of its surroundings. This can be represented as a set of
new feature layers that persist between actions and store the
history of what the agent has observed (Fig. 5). From these
features, we can compute a set of value maps that indicate
where the agent should go. Following this approach leads
to a rigidly-defined policy with a small set of user-defined
parameters. We describe this method in the following sections.

A. Persistent Feature Layers

The first persistent feature layer we discuss is the occupancy
map, MO, shown in Fig. 5a. Each cell in MO starts as
UNOBSERVED with a value of 0.5. The cells are set to either 1
when a cell is observed as FREE or 0 when a cell is observed
as WALL. We assume that the environment is static, although
this approach could be used to model dynamic environments as
well, using a value between 0 and 1 to represent the likelihood
that a cell is occupied. The occupancy map is used for path
planning to represent where the agent can move and what parts
of the map remain unexplored. As a post-processing step, we
fill in unreachable areas of the environment as WALL.

The next persistent feature layer is the target history layer,
MT , shown in Fig. 5e. This layer starts with each cell set
to 0. Each time a target is observed in a grid cell, the value
is incremented by 1. The target history layer keeps track of
where and how often targets have been observed.

The next two persistent feature layers are the terrain history
maps, Mt1 and Mt2, shown in Fig. 5c and 5d. These binary



Fig. 6. Time since last observation layer, MR, scaled to the unit interval and
maintained as an additional persistent feature layer.

(a) (b)

Fig. 7. Distance maps computed from the observation in Fig. 4 and persistent
feature layers in Fig. 5. (a) Target distance map, DT . (b) Unobserved distance
map, DU .

maps save the terrain types, MEADOW and FOREST, for each
observed FREE cell. The value of a cell, 0 or 1, indicates the
presence of a given terrain type.

Finally, the path history feature layer, MP saves the number
of times each grid cell has been visited by the agent (Fig. 5b).
The layer starts with each cell set to 0 and is incremented by 1
each time the agent visits a cell. Though not strictly necessary
to include, we set all WALL cells to −1 when observed to aid
in the visual interpretability of this feature layer.

One additional persistent feature layer that can be used is
the time since a grid cell was last observed, shown in Fig. 6.
This layer, MR, is initialized to all 0, and it is set to 1 for
all FREE cells at the time of observation. All other cells are
discounted by a factor γr = 0.99, eventually approaching 0
if they have not been recently observed. This feature layer is
useful for knowing how up-to-date the mental map is and for
tasks involving persistent monitoring.

B. Computed Feature Layers

Two of the most useful metrics for deciding which action
to take are the distance to the nearest target (Fig. 7a) and
the distance to the nearest unobserved grid cell (Fig. 7b).
By moving to a grid cell that is closer to a target, the agent
can exploit knowledge that it has learned, whereas by moving
closer to an unobserved grid cell, the agent explores new areas
of the environment. Together, these metrics allow for a balance
of exploration and exploitation that ultimately leads to solving
any instance of the game.

The distance maps are computed by performing a breadth-
first search from a set of starting locations, utilizing only

the grid cells that have been observed to be not WALL (i.e.
the cells for which MO > 0). For the target distance map,
DT , any grid cell that has been observed to have a target
(MT > 0) is set as a starting location. The value of DT for
any cell then contains the shortest possible distance to one
of these target cells. Note that the algorithm can search both
FREE and UNOBSERVED cells and may therefore assign a
smaller distance than the true value if a hidden WALL exists.
For the unobserved distance map, DU , all UNOBSERVED
cells (MO = 0.5) are used as the starting locations, and the
distances stored in DU are the shortest distances to the nearest
unobserved cell.

In the present work, the distance maps represent the number
of steps required to reach a goal, and therefore all steps have
a uniform cost of 1. In a true multi-objective setting (left for
future work), the distance maps could be a function of various
environment features, such as terrain type, distance from a
wall, visibility, or other user-defined criteria.

C. Policy Weights

A typical policy for solving this grid-world environment
starts by using incoming observations to update and maintain
the persistent feature layers of the “mental map”. After new
information is acquired each step, the distance maps are
recomputed and used to decide the direction to move. Perhaps
the most straightforward policy is the greedy policy, πG.
With this policy, we define a combined distance map D
that represents the minimum remaining distance to some goal
location. For the greedy policy, D is defined as either the
distance to the nearest known target, DT if a target has been
observed but not yet cleared, or the distance to the nearest
unobserved grid cell, DU , otherwise. The neighboring grid
cells of the current agent position are then checked in D. The
direction of the cell with the smallest value that is not WALL
is chosen as the action. This policy defaults to an exploitation
mode that always moves towards any discovered targets. If
there are no known target locations, the policy reverts to an
exploration mode and moves towards the nearest unobserved
grid cell in an attempt to discover new information.

While the greedy policy is intuitive and performs reasonably
well on most environment instances, it can be improved. In
some cases, the best strategy would be to finish exploring an
area before moving across the entire map to clear a target,
only to have to return and finish exploring later. Clearly, there
should be some balance between exploration and exploitation.
The weighted policy, πW, uses a combination of both DT and
DU to define D. We define three weights, wt, wu, and wp,
representing the relative importance of the target feature, the
unobserved feature, and the path history feature. The path
history is included to discourage revisiting locations and to
prevent the agent from getting stuck in local minima. The
combined distance map D is then defined as

D = wtDT + wuDU + wpMP . (3)

As with the greedy method, the agent selects the action that
moves to a cell with a smaller value in D.



(a) (b) (c)

Fig. 8. A grid-world environment solved with three different weighted policies. In each case, the agent (red circle) must visit all 10 targets (blue crosses). The
agent’s observations are limited by line-of-sight as it explores the initially unknown environment. (a) Exploration (θ = −1). Total steps: 644. (b) Balanced
(θ = 0). Total steps: 1005. (c) Exploitation (θ = 1) Total steps: 322.

Fig. 9. Total number of steps required to clear 10 targets in a grid-world,
averaged over 100 instances and plotted for varying values of θ, indicating
the degree of exploration vs. exploitation.

The weighted policy provides a way to parameterize the
behavior of the agent. The three weights can be seen as
a way to specify the importance of the different features.
Additional features could be added to this approach to create
more directed behavior.

D. Parameter Sweep Experiment

To demonstrate the effect of the parameters on the weighted
policy, we consider a simplified grid-world problem environ-
ment. In this experiment, we ignore terrain and only consider
FREE and WALL cells. Targets are also assumed to always be
detected so long as they are visible by line-of-sight. We place
10 targets in the environment with the tabu-disk sampling
method and require the agent to clear all 10 targets. This is
effectively a variation of the traveling salesman problem where
the distances are unknown a priori.

We assign the weights using a single parameter θ, where

wt =

{
1 + θ, θ ≥ 0

1, θ < 0
, (4)

wu =

{
1, θ ≥ 0

1− θ, θ < 0
, (5)

and
wp = 1. (6)

This gives more weight to exploitation when θ > 0, and more
weight to exploration when θ < 0.

An example environment is shown in Fig. 8, where three
different settings of θ are used for the weighted policy. In
each of these cases, ties in action selection are chosen deter-
ministically for reproducability. When θ = −1 (Fig. 8a), the
agent takes 644 steps and prioritizes exploring the environment
over clearing targets. When θ = 0 (Fig. 8b), the objectives are
balanced, but this leads to indecision and frequent pacing back
and forth until the path history weight pushes the agent either
toward a target or some unobserved region, resulting in a total
path length of 1005 steps. Finally, when θ = 1 (Fig. 8c),
the agent prioritizes clearing targets and has the shortest path
length of 322 steps. This is not the shortest possible route,
however, since limited visibility causes the agent to make a
detour when it discovers a distant target, only to turn around
and retrace its route when it then discovers a closer one.

In general, we find that with few exceptions, shorter paths
can be obtained by favoring exploitation over exploration. This
is confirmed by repeating this experiment for 100 randomly
generated environments with values of θ ranging from −2 to 2.
The average number of steps required to complete each map
is shown in Fig. 9. A noticeable peak can be observed for
θ = 0, suggesting that when the objectives are balanced, the
agent is more likely to be indecisive and get stuck in a local
minimum, requiring the accumulation of path history to push
it out. The flat response as θ grows large or small indicates
that the weighted policy begins to act as pure exploration or
exploitation with little mixing of the two strategies. In order
to elicit more complex behavior, a more challenging version
of the problem is required.



Fig. 10. Destination maps predicted by the U-Net after 1000 training steps.

Fig. 11. Destination maps predicted by the U-Net after 500,000 training steps.

IV. A NEURAL NETWORK POLICY

One of the shortcomings of the linear weighted policy is
that it requires manually defined feature layers and preference
weights. Learning the weights for a given problem specifi-
cation may be possible, but as demonstrated in the previous
section, optimal values may be trivially easy to find. Still,
the level of control provided by the linear weighted policy
and the explainability aspect are appealing qualities. In this
section, we define a neural network policy, πNN, that extends
the linear weighted policy and provides the framework for
learning advanced behaviors.

A. U-Net Training

The U-Net architecture [8] was originally proposed to
perform image segmentation, taking an image input and pro-
ducing a classification map with a label for each pixel. This
method of using an encoder and decoder pair to map image
features to a latent space and then reconstruct an image has
found broad success, and we utilize the Segmentation Models
library [11] implementation of a U-Net in our work. We use
a ResNet-34 encoder [12] with a 6-channel 64 × 64 image

input corresponding to the 6 persistent feature layers shown
in Fig. 5. The output is a single channel 64× 64 image with
a sigmoid activation function.

We train this model to learn where to go next in the
environment given the current state of the agent’s mental map.
The combined distance map, D, from the linear weighted
policy is defined such that the most desirable locations have
the smallest values, and the agent moves in the direction of
its lowest valued neighbor cell. Here, we scale and invert
the distance map to be in the range [0, 1] such that the most
desirable locations are assigned higher values. Assuming that
the smallest possible value in D is 0 for any cell that is not
WALL, the scaled destination map, D′, is defined for a grid
cell c as,

D′(c) =

{
0, c is WALL

1
D(c)+1 , otherwise

. (7)

To train the model, the linear weighted policy is applied
continuously in randomly generated environments of the kind
described in Section II with θ = 1. When the episode is
complete, a new instance is generated and training continues.
At each step, the combined distance map, D, is transformed
into the scaled destination map, D′, which is used as the target
output of the model. The predicted map, P , is generated from
the persistent feature layers of the current observation, and the
RMSE loss is computed over all cells that are not WALL. Some
example outputs of the model after 1000 training steps are
shown in Fig. 10, and after 500,000 training steps in Fig. 11.
After this amount of training, the model was generally able to
reproduce any destination map provided to it.

B. From Prediction to Action

The destination map predicted by the model cannot be used
to select agent actions directly, as it remains too imprecise
and unreliable. As with the balanced objectives from the linear
weighted policy, situations can arise where the agent becomes
stuck and unable to proceed. To remedy this, we build and
maintain a value map, V , that represents the most up-to-
date assessment of where the agent should go. This provides
a flexible solution that can be adapted for various types of
agent movement, including step-by-step actions in the grid-
world environment and the waypoint-based control method
often used on real robot or UAV hardware. Fig. 12 shows
an overview of the steps taken to turn the model prediction
into a usable value map for selection agent actions.

The value map, V , is initialized to zero at the beginning of
an episode and is updated after every new observation. These
observations are passed to the model to produce the predicted
destination map, P , for the current step (Fig. 12a). The grid
cells with the highest value in the predicted destination map
are selected as the potential destinations, C. One of these cells
will be chosen as the current destination, cd, and added to the
value map. The current destination can be thought of as the
next waypoint that the agent would like to visit, given all of
the information up to the current time step. In practice, this



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 12. Steps in the procedure for updating the persistent value map from the model prediction. (a) Predicted destination map, P . (b) Distance to the agent.
(c) Probability of selecting a grid cell as the current destination. (d) Distance from the current destination, DP . (e) The initial persistent value map, V . (f)
Reduction factor, γ, based on the time since a cell was last observed. (g) Temporary value map, V ′. (h) Updated value map, V ′′, with a smooth gradient.

location can change drastically between steps, so it is not used
as a goal directly.

To give more priority to nearby locations, the value of each
potential destination ci ∈ C is scaled by the inverse distance
to the agent, di (Fig. 12b), and the unnormalized probability
of selecting ci as the current destination is given as

p̃(ci) =
P (ci)

di + 1
. (8)

These values are normalized and the current destination, cd,
is selected with probability

p(cd) =
p̃(cd)∑
c∈C p̃(c)

. (9)

Fig. 12c shows the probability of selecting each cell for the
given example, which in this case is limited to a single grid
cell, but could be multiple locations if the prediction map
becomes saturated.

A new distance map, DP (Fig. 12d), is computed from the
sampled destination location such that the value of each grid
cell is the minimum possible number of steps required to reach
cd. The first step of updating the value map (Fig. 12e) is to
multiply the values in V by a discount factor γ = 0.99 and
then increment by the inverse distance of DP . Finally, the
value map is reduced in areas that have been recently observed,
as measured by the “time since last observation” layer, MR

(Fig. 6). This is to prevent the agent from assigning too much
value to nearby locations and getting stuck in a local optimum.
The reduction factor for a grid cell c is defined as

λ(c) =

{
1, MT > 0

1−MR(c), otherwise
. (10)

Fig. 12f shows the reduction factor for each cell in the given
example. This effectively eliminates any value in the directly
observed area except for targets, forcing the agent to move to
new areas unless there is an obvious target that can be cleared.
The temporary value map V ′ (Fig. 12g) for a grid cell c is
defined as

V ′(c) = λ(c)

(
γV (c) +

1

DP (c) + 1

)
. (11)

Finally, new the value map, V ′′ (Fig. 12h), is computed by
propagating the values in V ′ back to the agent’s location. V ′′ is
initially set to be equal to V ′ and then iteratively updated. For
each cell c, the updated value is determined by the maximum
value of its neighbors, N(c) multiplied by a discount factor
µ = 0.95.

V ′′(c)← µ · max
n∈N(c)

V ′′(n). (12)

The updates continue until the values in V ′′ have settled or a
maximum number of iterations have occurred. The persistent
value map is then updated as V ← V ′′. The result of this
procedure is a smooth gradient in the local region around the
agent, so that the previous method of selecting an action to
move to a neighbor grid cell with a better (larger) value in V
can be applied. If the control method were waypoint-based, the
next waypoint could be selected as the cell with the maximum
value in V , only changing when the value of a different cell
exceeds the current value by some threshold.

The entire process of updating the value map and selecting
an action after each observation is summarized by the pseu-
docode in Algorithm 1.



Algorithm 1 Value Map Update and Action Selection
1: Initialize V with all 0 values
2: for each new observation do
3: Get predicted destination map P from the U-Net
4: Identify the maximum cells C in P
5: Sample the current destination cd from C
6: Compute the distance map DP from cd
7: Determine the reduction factor λ from MR and MT

8: Compute V ′ (Equation 11)
9: Propagate values in V ′ to get V ′′ (Equation 12)

10: Set V ← V ′′

11: Select the action that moves to the neighboring grid cell
with the largest value in V

12: end for

C. Comparing to the Linear Weighted Policy

The neural network policy provides an alternative way to
solve grid-world problems without manually specifying feature
weights. The U-Net in our model was trained to replicate the
behavior of the linear weighted policy with θ = 1. As such,
it could be expected to perform comparably to that approach.
To verify this, we evaluate the neural network policy and the
linear weighted policy with 100 grid-world instances, using
θ ∈ {−1, 0, 1} for the linear wieghted policy. The results
of this experiment are shown in Fig. 13. The episodes are
sorted based on the average number of steps required across
all policies.

Across the 100 episodes, the average number of steps was
229 for the neural network policy, and it was 231 for the linear
weighted policy with θ = 1. For θ = −1, the average number
of steps was 465, and for θ = 0 it was 459. On average, the
neural network policy performed about as well as the linear
weighted policy it was based on, and significantly better than
the other variations.

In certain episodes, the exploration-based policy performed
better than the exploitation-based policy, and the neural net-
work policy was best. Fig. 14 shows one such example case. In
this environment, the exploitation policy (Fig. 14b) explored
the entire map without detecting the true target (orange cross).
Once there are no more UNOBSERVED cells, the agent has no
sense of where to go and is guided only by the path history,
MP , until it eventually finds the target. The exploration policy
(Fig. 14a) and the neural network policy (Fig. 14c) both
manage to find the target more quickly. Fig. 15 shows an image
sequence of the path history, U-Net prediction, and value map
of the neural network policy as it solves the problem.

V. CONCLUSIONS AND FUTURE WORK

In this work, we presented a linear weighted policy and a
neural network policy for solving the target detection problem
in partially observable grid-worlds. Both methods were able
to solve general instances of the problem and could be
adapted for use in more realistic settings. The linear weighted
policy made use of manually defined feature layers, which
provide a way to integrate user preferences into a common

Fig. 13. Total steps required to complete 100 different grid-world environ-
ments for the linear weighted policy, πW, with θ ∈ −1, 0, 1, and the neural
network policy, πNN. The top graph shows the raw step counts, and the bottom
graph shows the relative step counts compared to the neural network policy.

multi-objective framework. We demonstrated this idea with a
straightforward parameter to balance exploration and exploita-
tion and found exploitation to be generally more beneficial in
this problem setting. The neural network policy used a U-Net
model to predict a destination map of where to go, and after
post-processing, it was able to match the performance of the
linear weighted approach.

These policies show that grid-world problems involving
the search for a target in an unknown environment can be
generally solved using hand-crafted or learned feature maps.
The problem setting in these experiments make use of the
terrain type only as a way to influence the detection of a target,
but more complex problems could also use terrain or other
environment features to direct agent behavior by specifying
different rewards.

The U-Net model is capable of learning how to map
environment features to desired actions. One clear direction for
future work is to extend this approach with an RL framework
to further improve the neural network policy, possibly incor-
porating recurrent or attention-based architectures. For this
approach to be more successful than a hand-crafted approach,
a more complex problem setting will likely be required that
cannot be easily solved by the linear combination of feature
maps. In simpler environments, there is less to be gained from
the adoption of a neural network policy.

Finally, this work could be adapted to multi-agent settings
with a formal multi-objective framework. There are several
ways these models could incorporate human teaming and
specific user preferences. Ultimately, we would like to see
this work applied towards more realistic scenarios involving
3D scenes and physical agents such as ground robots or UAVs.



(a) (b) (c)

Fig. 14. A case where the exploration policy performs better than the exploitation policy, and both are outperformed by the neural network policy. The agent
(red circle) must detect and clear the one true target (orange cross) and distinguish it from the false alarms (blue crosses). (a) Exploration policy (578 steps).
(b) Exploitation policy (880 steps). (c) Neural netwok policy (282 steps).

Fig. 15. Image sequence of the path history, U-Net prediction, and value map of the neural network policy as the agent solves the environment in Fig. 14.

REFERENCES

[1] M. Chevalier-Boisvert, B. Dai, M. Towers, R. de Lazcano, L. Willems,
S. Lahlou, S. Pal, P. S. Castro, and J. Terry, “Minigrid & Miniworld:
Modular & customizable reinforcement learning environments for goal-
oriented tasks,” CoRR, vol. abs/2306.13831, 2023.

[2] M. Chevalier-Boisvert, D. Bahdanau, S. Lahlou, L. Willems, C. Saharia,
T. H. Nguyen, and Y. Bengio, “BabyAI: First steps towards grounded
language learning with a human in the loop,” in International Conference
on Learning Representations, 2019.

[3] S. Thrun, “Learning Occupancy Grid Maps with Forward Sensor Mod-
els,” Autonomous Robots, vol. 15, no. 2, pp. 111–127, Sep. 2003.

[4] G. Oriolo, G. Ulivi, and M. Vendittelli, “Real-time map building and
navigation for autonomous robots in unknown environments,” IEEE
Transactions on Systems, Man and Cybernetics, Part B (Cybernetics),
vol. 28, no. 3, pp. 316–333, Jun. 1998.

[5] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard,
“OctoMap: An efficient probabilistic 3D mapping framework based on
octrees,” Autonomous Robots, vol. 34, no. 3, pp. 189–206, Apr. 2013.

[6] D. Duberg and P. Jensfelt, “UFOMap: An Efficient Probabilistic 3D
Mapping Framework That Embraces the Unknown,” IEEE Robotics and
Automation Letters, vol. 5, no. 4, pp. 6411–6418, Oct. 2020.

[7] H. Li, Q. Zhang, and D. Zhao, “Deep Reinforcement Learning-Based
Automatic Exploration for Navigation in Unknown Environment,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 31, no. 6,
pp. 2064–2076, Jun. 2020.

[8] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Net-
works for Biomedical Image Segmentation,” in Medical Image Com-
puting and Computer-Assisted Intervention – MICCAI 2015, N. Navab,
J. Hornegger, W. M. Wells, and A. F. Frangi, Eds. Cham: Springer
International Publishing, 2015, pp. 234–241.

[9] A. R. Buck and J. M. Keller, “A myopic Monte Carlo strategy for
the partially observable travelling salesman problem,” in 2016 IEEE
Congress on Evolutionary Computation (CEC), Jul. 2016, pp. 632–639.

[10] A. Buck, R. Camaioni, B. Alvey, D. T. Anderson, J. M. Keller, R. H.
Luke, III, and G. Scott, “Unreal engine-based photorealistic aerial data
generation and unit testing of artificial intelligence algorithms,” in
Geospatial Informatics XII, vol. 12099. SPIE, May 2022, pp. 59–73.

[11] P. Iakubovskii, “Segmentation models pytorch,”
https://github.com/qubvel/segmentation models.pytorch, 2019.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” in 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Jun. 2016, pp. 770–778.


