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 We want a 3D simulator for generating synthetic 

data with ground truth.
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 What is “ground truth?”

▪ From Wikipedia: “Ground truth is information that is known to be 

real or true, provided by direct observation and measurement 

(i.e. empirical evidence) as opposed to information provided by 

inference.”

 Where does it come from?

▪ Depends on the application and context

▪ In remote sensing, it refers to what actually exists in the world 

for each pixel in an image.
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 What is a pixel?

▪ “Not a little square!” – Alvy Ray Smith

▪ Sampled points on a grid

 In photography,

▪ Each pixel is a discrete sampling
of the light that reaches the sensor.

▪ Pixels aggregate all this 
information into a single 
scalar value.

▪ Color (and other features) 
can be represented with 
multiple image channels.
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 Because pixels aggregate information, how do we 

define the ground truth?

▪ Each pixel only gets one value

▪ Class label

▪ Depth

▪ However, sometimes it’s not

clear what value to assign.

▪ We can increase resolution,

but this doesn’t solve the

underlying problem.
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Class: Sky
Distance: ∞

Class: Rock
Distance: 50

Class: Tree? Rock?
Distance: 45? 20?



 A lot of effort can go into hand-labeling data

▪ But how accurate is it?

▪ Pixel-level accuracy is hard to come by.

▪ We often use coarse labels (e.g. bounding boxes, image classes)
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 Synthetic data can provide “ground truth”

▪ Automatically generated alongside data

▪ Object detections

▪ Semantic labels

▪ Depth 

 However, even simulated

ground truth isn’t perfect.
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 We designed a series of experiments to study the 

issues associated with simulated ground truth.

▪ Focus on single image depth estimation

▪ Simple dataset to understand fundamentals (nothing fancy)
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 Scene consists of rotating cubes in front 
of a flat plane
▪ Cubes are red. Background has green/blue 

checkerboard pattern.
▪ Should be able to learn that red=near and 

blue/green=far

▪ Background plane is at various depths.
▪ Want to learn how cube size relates to depth

▪ Collect 40 images at 24 different 
background depths. (960 images total)



 We collected both aliased and anti-aliased imagery
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 We also collect a high-
resolution image

▪ Upscaled 10x

▪ Each pixel now has 100 depth 
samples

▪ We store these as an array of 
values for each pixel

▪ This is an alternative to aliased 
or anti-aliased imagery



 We use a Resnet18 depth network from Monodepth2 

▪ Train/test on interleaved sets (even/odd)

▪ Trained for 30 epochs

▪ Output is mapped to a fixed range between 10 and 100 meters
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 GT is clearly wrong

▪ Anti-aliased color

▪ Anti-aliased depth
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 Machine learns to match the wrong depth GT

Ground Truth

Prediction



 GT could be near or far

▪ Aliased color

▪ Aliased depth
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 Machine picks one or the other (bimodal distribution)

Ground Truth

Prediction



 Many possible truths

▪ Anti-aliased color

▪ Bundle depth
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 Machine can’t decide what value to pick

Ground Truth

Prediction



 Not all values are equal

▪ Same as Ex. 3 but change the loss

▪ Now prefers closer points
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 Machine now tends to learn edges as foreground

Ground Truth

Prediction



 Simulated data can help train AI algorithms, but care 
should be taken when using as ground truth.
▪ May be better to think in terms of a “gold standard”

 Anti-aliased depth images can cause an algorithm to 
learn a false average depth.

 Aliasing in the ground truth is also problematic.
▪ Network cannot tell if a feature should map to near or far

 Bundled depth is one mitigation strategy.
▪ May be able to optimize in future work
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