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Abstract—The spatial configuration of objects in a scene is
important to many applications. In particular, 3D environments
constructed from point cloud observations are often used for
navigation and planning with real-time requirements. In these
settings, the ability to recognize and distinguish one set of objects
from another may depend largely on how they are positioned
with respect to each other. In this article, we explore two dif-
ferent approaches for describing the relative spatial relationship
between two objects represented as 3D points: the histogram of
forces, and a method using bounding boxes and fuzzy numbers.
We use 2D axis-aligned projections of the objects to facilitate the
computation of force histograms, and compare this approach to
the bounding box and fuzzy number method. Our experiments
are performed on the NPM3D dataset, consisting of hand-labeled
point cloud objects in an outdoor street-level environment. The
results highlight the strengths and weaknesses of each approach
and we discuss the most appropriate applications for both.

I. INTRODUCTION

How can the relative spatial arrangement of two objects

be described? This question lies at the heart of many spatial

reasoning applications and guides the ways in which we design

algorithms that can understand the physical world. Real-world

environments can be captured as 3D point clouds using a

LiDAR scanner or depth camera, representing the locations of

objects in the scene and resulting in a large volume of spatial

data. As we seek to understand this data and construct spatial

models, it becomes important to represent distinct objects

and the ways in which they are positioned relative to each

other. In this article, we investigate ways in which the spatial

relationship between two 3D point clouds can be described.

Throughout this work, we consider the concept of a static

3D object that occupies some position in space and has some

finite, non-zero volume. We represent such an object as a set of

3D points, typically captured from some physical sensor or a

simulated depth image at a single moment in time. The points

represent a portion of the object’s visible surface and may only

cover a limited part of the entire underlying object. In these

situations, the full extent of the object may be unknown and

the spatial relationships that exist between objects need to be

capable of handling such uncertainty.

There are several established methods for computing spatial

relationships between 2D objects, some of which have been

extended to 3D [1]. The histogram of forces (HoF) [2], [3],

[4] is one such approach that has been broadly adopted by the

community and has several desirable properties. It is a robust

and informative descriptor that has been applied in a variety

of spatial reasoning applications [5], [6], [7], [8]. However,

although 3D versions exist [9], the HoF has not been used

widely for 3D applications or with point cloud objects. This

may be due to the added complexity of computing forces in

3D, or the inefficiencies that arise from being unable to treat

objects as solid volumes.

Large outdoor scenes can be captured dynamically by

mobile sensing platforms such as unmanned aerial vehicles

(UAVs) or autonomous vehicles. Often in these applications,

processing power is limited due to the use of embedded

hardware and real-time requirements. In these situations, it can

be advantageous to represent scene objects using simplified

representations such as axis-aligned bounding boxes. In [10],

the authors propose constructing a spatial relationship graph

(SRG) of a labeled point cloud dataset using bounding boxes

and fuzzy numbers. This allows a user to run a spatial query

on the scene, such as “Find all objects that are close to me

and to the north.”

Although bounding box representations can satisfy the

needs of many applications, their properties as relative position

descriptors have not been fully compared to more established

methods, such as the histogram of forces. Following a brief

discussion of related work in Section II, Section III discusses

how the commonly used 2D HoF methods can be applied

to 3D point cloud objects by considering orthogonal 2D

projections, and how they can be used to compare the spatial

relationships between two pairs of 3D point cloud objects.

We then introduce a descriptor based on bounding boxes

in Section IV and define several different ways to compute

spatial similarity. In Section V, we evaluate and compare these

methods on simple 2D examples, and then examine how they

perform on real-world data in Section VI. Section VII con-

cludes with a discussion on the differences between methods

and how they can best be used in practice.

II. RELATED WORK

In this work, we are mainly concerned with spatial rela-

tionships involving distance and direction. Another commonly

used concept, particularly in the area of spatial databases and

GIS, is that of topological relationships [11]. In these systems,

the representation of imprecise boundaries is important and

and queries often ask the degree to which such objects

intersect. See [12] for a recent survey of fuzzy approaches

in this area.
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Fig. 1. Two examples of object pairs represented as 3D point clouds. (a) shows a person standing near an information sign and (b) shows two other signs in
a similar spatial configuration. For each pair, we consider the red object as the referent and the blue object as the argument. Each object is projected into 2D
along the three principle axes. Bounding boxes are shown for each object.

Fuzzy sets have also long been used to model spatial

relationships in image processing applications [13]. Usually

restricted to 2D domains, these approaches can be used to

evaluate relationships such as above, beside, near, surrounds,

between, etc. The histogram of forces is one such method for

describing relative position that we explore in this work.

III. HISTOGRAMS OF FORCES

A. Force Histograms

The histogram of forces is a well-established means of

capturing the spatial relationship between two objects. To

compute a force histogram, each angle θ is considered and

the strength of the proposition “Object A is in direction θ
from object B” is evaluated. Various types of forces can be

computed depending on how the distance between objects is

used. Two commonly used histograms are those of constant

and gravitational forces. The histogram of constant forces

(F0) is independent of the distance between objects and the

histogram of gravitational forces (F2) is biased toward nearby

areas.

In cases where the objects overlap, the distance d between

objects is reduced to zero. This can cause issues for the

histogram of gravitational forces, which uses a 1/d2 term.

To accommodate this, a histogram of hybrid forces was

proposed [2], [14] that acts as a blending of both the F0 and

F2 histograms, being equivalent to F2 at far distances and

resorting to F0 when the objects overlap. We refer to this

hybrid histogram as F02 and use it in place of F2 throughout

this work. Although the F02 histogram incorporates elements

of both the F0 and F2 histograms, we continue to use both

F0 and F02 as they capture different properties for non-

intersecting objects.

Most of the existing work done with the HoF focuses on 2D

objects. While some methods have been explored to adapt the

HoF to 3D [9], the 2D implementations are much more mature.

Furthermore, we use the raster-based implementations of these

methods as they are easier to generalize than the vector-based

approaches. The next section explains how we prepare a 3D

point cloud object as a set of raster image projections along

the principle axes.

B. Axis-Aligned Projections

We use a point cloud representation for 3D objects as a

matter of practicality. As an example, we consider the NPM3D

dataset [15], which consists of a large 3D point cloud with

labeled objects in an outdoor urban environment. Let O be

an object consisting of a set of points (x, y, z) in R
3. The

points can be projected along any of the three axes to give

projections in the XY, XZ, and YZ planes. See Fig. 1 for

two examples of point cloud object pairs from the NPM3D

dataset and their 2D projections. The projected points can be

discretized into binary raster images with a fixed pixel size

as shown in Fig. 2. Here, we use the red and blue channels

to show the two object images. By choosing an appropriate

pixel size for the given point density (we use 5 cm for our

experiments), the projected 2D images are made to capture the

objects’ shapes as seen from looking down each axis.
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Fig. 2. The projected points from the examples in Fig. 1a (a) and Fig. 1b
(b) are discretized into three raster images representing the XY, XZ, and YZ
planes.

Since we are interested in the spatial relationships between

objects, projections are done in pairs. To build the projected

images for a given pair of objects, the image bounds are

set to cover the extents of both objects. This can lead to a

compact image if the objects are nearby, but may result in

large (mostly empty) images if the objects are far apart. This

is done to facilitate the computation of the force histograms,

which require common image sizes for both objects.

For each of the three 2D projections, we compute both the

histogram of constant forces (F0) and the histogram of hybrid

forces (F02) with an angular resolution of 2◦. This gives a

total of six histograms, each being a 180-dimensional vector.

We refer to this set of histograms as the HoF relative position

descriptor (HoF-RPD),

HoF-RPD(A,B) =

(

FABXY

0
FABXZ

0
FABY Z

0

FABXY

02
FABXZ

02
FABY Z

02

)

(1)

where FABk

0
is the histogram of constant forces computed

from projection k and likewise FABk

02
is the histogram of

hybrid forces.

The force histograms computed between each pair of objects

from each projection in Fig. 2 are shown in Fig. 3. The top

row of the figure shows the histograms of constant forces (F0)

for each of the three projections, and the bottom row shows

the histograms of hybrid forces (F02). Note that because we

Fig. 3. The HoF relative position descriptors (HoF-RPDs) for the object
pairs in Fig.1. The F0 and F02 histograms are computed for each of the
three projected images in Fig. 2. The histograms from pair (a) are shown
in orange and those from pair (b) are shown in green. The horizontal axis
shows the angle θ in degrees, and the vertical scales of each histogram are
normalized to aid in visual comparison.

often encounter overlapping objects in the 2D projections, we

choose to use the hybrid histogram over the histogram of

gravitational forces, which can lead to unpredictable results

when objects overlap. The histograms from both pairs are

plotted on the same axes and normalized to aid in visual

comparison.

C. Force Histogram Similarity

We now consider how to evaluate the similarity of two

HoF-RPDs. The HoF provides a rich feature descriptor that

captures much of the nuance between different object shapes

and positions. In general, however, we would like to compute a

similarity measure SHoF(A,B,A′, B′) ∈ [0, 1] that represents

how similar the object pairs (A,B) and (A′, B′) are to each

other. There are many ways this could be defined, all with

variations on what aspects of the spatial relationship are most

important.

In this work, we consider the following three histogram

similarity measures used in [4],

µT (h1, h2) =

∑

θ min
(

h1(θ), h2(θ)
)

∑

θ max
(

h1(θ), h2(θ)
) , (2)

µP (h1, h2) = 1−

∑

θ

∣

∣h1(θ)− h2(θ)
∣

∣

∑

θ

∣

∣h1(θ) + h2(θ)
∣

∣

, (3)

µC(h1, h2) =

∑

θ h1(θ)h2(θ)
√

∑

θ h
2
1
(θ)
√

∑

θ h
2
2
(θ)

, (4)

where h1 and h2 are force histograms and hi(θ) is the value in

direction θ. µT is a Tversky index (Tanimoto coefficient), µP

is a Pappis’ measure [16], and µC is the normalized cross-

correlation. All three methods produce values in the range

[0, 1] with 0 representing no similarity and 1 representing



TABLE I
FORCE HISTOGRAM SIMILARITIES

F0 F02

XY XZ YZ XY XZ YZ

µT 0.236 0.201 0.722 0.016 0.207 0.868
µP 0.381 0.334 0.839 0.031 0.343 0.929
µC 0.548 0.859 0.948 0.482 0.899 0.989

TABLE II
OBJECT PAIR SIMILARITIES USING THE HOF-RPD

sXY sXZ sY Z Smin Smean

µT 0.126 0.204 0.795 0.126 0.375
µP 0.206 0.338 0.884 0.206 0.476
µC 0.515 0.879 0.968 0.515 0.787

equivalence. The µC measure also has the property of being

independent to the scale of each histogram.

To compute an overall similarity score for two object

pairs (A,B) and (A′, B′), the histogram similarities for each

force type and projection need to be aggregated. Because

the histograms of constant and gravitational (hybrid) forces

are considered to be of equal importance, their similarity

scores are averaged together. For a given histogram similarity

measure µ and projection k, the similarity is computed as

skµ(A,B,A′, B′) =
µ
(

FABk

0
, F

A′B′

k

0

)

2
+

µ
(

FABk

02
, F

A′B′

k

02

)

2
.

(5)

Across the three projections, we then consider both the mini-

mum and mean as two ways to aggregate the combined scores.

The minimum provides a pessimistic view of the overall

similarity and the mean gives a more balanced approach. Other

methods such as the maximum or an OWA operator could be

used but are not considered here. Formally, we have

SHoF,min,µ(A,B,A′, B′) = min
(

sXY
µ , sXZ

µ , sY Z
µ

)

, (6)

and

SHoF,mean,µ(A,B,A′, B′) =
1

3

(

sXY
µ + sXZ

µ + sY Z
µ

)

. (7)

Taken with the three different histogram similarity mea-

sures, a total of six different measures are defined using the

HoF to compare the spatial similarity of two object pairs.

Table I shows the histogram similarities computed for the

HoF-RPDs in Fig. 3. Each row of the table reports a different

histogram similarity measure computed for each of the six

histogram pairs. Table II shows the averaged similarities for

each projection and the two overall similarity measures. We

note that for this single example, the range of similarity

scores varies from 0.126 using SHoF,min,µT
to 0.787 using

SHoF,mean,µC
.

(a) (b)

Fig. 4. 3D object pairs from Fig. 1a (a) and Fig. 1b (b) shown as AABBs and
their centroids. The pairs have each been translated to the origin to simplify the
presentation. (This does not change the relative position between the objects
in each pair.)

(a) (b)

Fig. 5. Triangular Fuzzy Numbers (TFNs) for the object pairs shown in
Fig. 4a (a) and Fig. 4b (b). Along each axis, the difference TFN is shown as
a green dashed line for (a) and an orange dashed line for (b). These difference
TFNs comprise the TFN-RPD and are computed by subtracting the position
of the argument object (blue) from the referent (red).

IV. BOUNDING BOX RELATIONS

A. Triangular Fuzzy Number Descriptor

In [10], Buck et al. proposed a framework for constructing

a spatial relationship graph (SRG) over a labeled point cloud

dataset using bounding boxes and triangular fuzzy numbers

(TFNs). For each object in a scene, the set of 3D points

comprising that object are reduced to an axis-aligned bounding

box (AABB) and a centroid. The relative position between

objects can then be computed by considering the extent of the

object in each dimension as a TFN. Distance and directional

queries can be performed using this simplified representation,

using the uncertainty associated with each TFN to guide the

selection.

Consider two objects A and B, each comprised of a set of

3D points. We denote the AABB of A with two new points,

Amin and Amax. Likewise, the AABB of B is given by Bmin

and Bmax. The centroids of both objects are given by Amean

and Bmean. As an example, see Fig. 4, which shows the

AABBs and centroids for the example object pairs in Fig. 1.



Fig. 6. TFN-RPDs for the object pairs in Fig. 4 plotted on the same axes
to aid in comparison. Similar membership functions indicate similar spatial
configurations.

The location of A and B along each of the three axes (x,

y, and z) can be expressed as the TFNs Ax, Ay , Az and

Bx, By , Bz . Each TFN spans the range of the object (min to

max) with the peak at the object’s centroid (see Fig. 5). The

difference between A and B along any of the three axes can be

computed by subtracting the TFN in that dimension of B from

that of A. The result is a new set of three TFNs that define the

“vector” D representing the minimum, maximum, and average

displacements of a point from within the bounds of A such

that it would end inside B. Here, the average displacement is

the vector between the object centroids, i.e. from Amean to

Bmean. Formally, we have

Dx = Bx −Ax (8)

Dy = By −Ay (9)

Dz = Bz −Az. (10)

We call this set of three difference TFNs the TFN relative

position descriptor (TFN-RPD) for the objects A and B,

TFN-RPD(A,B) = (Dx, Dy, Dz). (11)

Fig. 5 shows the TFNs that describe the object pairs in

Fig. 4. For each pair, and along each axis, the TFN for object

A (the referent) is shown in red and the TFN for object B (the

argument) is shown in blue. The TFN of the difference vector

D is shown as a dashed line and indicates the TFN that results

from computing B − A. The difference vectors (TFN-RPD)

from (a) are shown in green and the ones from (b) are shown

in orange.

B. Bounding Box Relation Similarity

To compare two object pairs using the TFN-RPD, we need

to define the similarity STFN(D,D′) ∈ [0, 1], where D and

D′ are the difference TFNs as computed above. In this section,

we discuss several different ways to define this measure used

in the literature. First, we consider the similarity between the

TFNs directly for each axis. Then we present a method using

bounding box similarity measures.

TABLE III
OBJECT PAIR SIMILARITIES USING THE TFN-RPD

SINGLE-AXIS METHODS

sX sY sZ Smin Smean

µmax 0.358 0.990 0.988 0.358 0.778
µIoU 0.053 0.846 0.717 0.053 0.539
µPD 0.507 0.920 0.855 0.507 0.761

1) Single-Axis Methods: The TFN-RPDs for the example

objects in Fig. 4 are shown again in Fig. 6, this time plotted

on the same axes. The ranges of the TFNs indicate the relative

position of the argument object from the referent along each

axis. If the two TFN-RPDs overlap, there is some agreement

that they share a similar spatial configuration. We can measure

this by defining a similarity measure between two TFNs. We

consider the following three methods in this work.

• Max: In this method, the similarity µmax is defined as

the maximum of the minimum of the two membership

values taken over all real numbers as in [10]. If the TFN

memberships are defined as mD(x) and mD′(x), then

µmax(D,D′) = max
x∈R

{

min
(

mD(x),mD′(x)
)}

. (12)

• IoU: This method defines the similarity µIoU as the

intersection over union of the areas of the two TFNs

as though they were (potentially) overlapping triangles.

Compared to the Max method, the IoU considers the full

width of the membership function and not just a single

point of intersection. Given two TFNs D and D′, the

similarity is defined as

µIoU(D,D′) =
|D ∩D′|

|D ∪D′|
. (13)

• PD: Here, the similarity µPD is defined as the percent

difference between the endpoints and centers of the two

TFNs. If there is no overlap between the two membership

functions, the previous two methods will give a similarity

of zero, whereas this approach measures how much one

TFN would need to be scaled as a fraction of the total

support width in order to match the other TFN. The

distance is then inverted to become a similarity measure

in the range (0, 1]. If the two TFNs are defined as

D = (d1, d2, d3) and D′ = (d′1, d
′
2, d

′
3), then

PD(D,D′) =
3
∑

i=1

|di − d′i|

d3 − d1 + d′
3
− d′

1

, (14)

and

µPD(D,D′) =
1

1 + PD(D,D′)
. (15)

In the single-axis approach, the overall similarity between

two TFN-RPDs D and D′ is computed by aggregating the

TFN similarities for each axis, similar to the HoF-RPD. Using

one of the above TFN similarity methods µ, we consider both

the minimum and the mean similarities to give the following

overall measures,



Fig. 7. Plots of the TFN-RPDs from Fig. 6 in 3D space as bounding boxes
and centroids. The 2D views along each axis are also shown.

STFN−SA,min,µ(D,D′) = min
(

sXµ , sYµ , s
Z
µ

)

, (16)

and

STFN−SA,mean,µ(D,D′) =
1

3

(

sXµ + sYµ + sZµ
)

, (17)

where siµ is the similarity between the TFNs on axis i using

method µ. The similarity scores for the example in Fig. 4

using the single axis methods are shown in Table III.

2) Bounding Box Methods: Another way to interpret the

TFN-RPD is as its own bounding box and centroid in 3D

space. Fig. 7 shows the TFN-RPDs from Fig. 6 plotted as

bounding boxes, as well as projections along each axis. One

limitation of the single-axis methods is that they do not directly

account for the interactions between axes. By considering 2D

bounding box projections or the full 3D bounding boxes, these

correlations can be captured more completely. We consider the

following three bounding box comparison methods, which can

be applied in both 2D and 3D.

• IoU: This method computes the intersection over union

(IoU) metric of the two bounding boxes as µIoU. Given

two TFN bounding boxes D and D′, the similarity is

defined as the same as before with Eq. 13, except now

using only the membership function endpoints as bound-

ing box coordinates rather than the triangular membership

function itself.

• GIoU: This method uses the generalized IoU to compute

the similarity measure µGIoU, as described in [17]. Since

the IoU gives a similarity of zero if the two boxes do

not overlap, the GIoU considers also the convex hull of

TABLE IV
OBJECT PAIR SIMILARITIES USING THE TFN-RPD

BOUNDING BOX METHODS

sXY sXZ sY Z Smin Smean S3D

µIoU 0.157 0.123 0.637 0.123 0.306 0.119
µGIoU 0.526 0.542 0.797 0.526 0.622 0.484
µPD 0.486 0.467 0.796 0.467 0.583 0.449

the two boxes C and subtracts the percentage of the hull

covered from the IoU score. The original GIoU is in the

range [−1, 1], so we modify it to be in the range [0, 1] as

follows,

µGIoU(D,D′) =
1

2

(

|D ∩D′|

|D ∪D′|
−

|C \ (D ∪D′)|

|C|
+ 1

)

.

(18)

• PD: The final method is the same µPD similarity as

before, only now applied in two or three dimensions.

Unlike the IoU and GIoU methods, the PD method

considers the centroid location as well as the bounding

box edges. For each axis j, consider the TFNs along axis

j as Dj and D′
j . Then the PD similarity is computed

using Eq. 14 as

µPD(D,D′) =
1

1 +
∑

j∈{x,y,z} PD(Dj , D′
j)
. (19)

For the bounding box methods, the overall similarity be-

tween two TFN-RPDs D and D′ can be computed as before,

by aggregating the similarities from each 2D projection, or

by considering the full 3D bounding boxes. The 2D methods

more closely align with the way in which the HoF similarity

is computed, whereas the 3D approach is more straightfor-

ward. We have the following overall bounding box similarity

measures,

STFN−BB,min,µ(D,D′) = min
(

sXY
µ , sXZ

µ , sY Z
µ

)

, (20)

STFN−BB,mean,µ(D,D′) =
1

3

(

sXY
µ + sXZ

µ + sY Z
µ

)

, (21)

and

STFN−BB,3D,µ(D,D′) = sXY Z
µ , (22)

where skµ is the similarity between the bounding boxes using

the axes in k and method µ. The similarity scores for the

example in Fig. 4 using the bounding box methods are shown

in Table IV.

V. COMPARISON IN 2D

Having defined several measures for evaluating the similar-

ity of two spatial relationships using both force histograms and

bounding box methods, we now consider ways to compare the

different approaches. We start by examining how the measures

behave on simple 2D objects. Fig. 8 and Fig. 9 show two

example cases using flat square objects of uniform weight.



(a)

(b)

(c)

Fig. 8. (a) A referent and argument pair of 2D objects to compare. The left
plot shows a static pair of objects A and B to be used as the referent spatial
relationship. The right plot shows A′ and several variations of B′. (b), (c)
Similarity scores between the referent and argument spatial relationships as
B′ shifts down and to the right (changes from dark blue to yellow).

In both examples, a pair of objects is defined as the referent

relationship and we evaluate the similarity of this object pair

to an argument relationship where one of the objects moves.

Consider first the example in Fig. 8a. Here the referent

relationship has two objects, A and B, with B positioned

above A. The argument relationship has objects A′ and B′,

with A′ being static and B′ moving from the top side of A′

down and to the right. As B′ moves, it changes color in the

figure from dark blue to yellow. Fig. 8b and Fig. 8c show the

similarity S(A,B,A′, B′) for several different measures as

B′ shifts in position. The scores all begin at 1 for the perfect

match between the two pairs where B′ is directly above A′

and decrease as B′ moves to the lower right (becomes more

yellow). In Fig. 8b, three HoF similarity measures and three

TFN bounding box measures are shown. All HoF measures

and the TFN-BB-IoU method have decreased to a similarity

of 0 by the middle position of B′, whereas the other two TFN-

BB methods continue to have non-zero similarity even in this

quite different configuration. Fig. 8c shows the TFN single-

axis similarity measures for this example. All methods except

PD have been reduced to zero by the final position of B′. Of

note is the sharp inflection point of the TFN-SA-Mean-Max

(a)

(b)

(c)

Fig. 9. (a) A referent and argument pair of 2D objects to compare. The left
plot shows a static pair of objects A and B to be used as the referent spatial
relationship. The right plot shows A′ and several variations of B′. (b, c)
Similarity scores between the referent and argument spatial relationships as
B′ shifts farther to the right (changes from dark blue to yellow).

method, which highlights the point at which the x-axis TFN

no longer contributes to the similarity.

The second example in Fig. 9a shows a similar analysis, this

time with the objects moving only along the x-axis. Here, the

two objects A and B are adjacent in the referent pose, and B′

moves away from A′ in the argument. Fig. 9b and Fig. 9c show

the similarity scores generally decreasing as B′ moves farther

away. Of the HoF methods, the HoF-C method maintains a

significantly higher degree of similarity than the others, likely

due to the implicit normalization of the histograms, which

reduces sensitivity to distance. The TFN-BB-IoU, TFN-SA-

Min-Max, and TFN-SA-Min-IoU methods have all reached

zero similarity by the halfway point, demonstrating the re-

strictiveness of these approaches.

VI. 3D EXPERIMENTS

The HoF-RPD and TFN-RPD features introduced in the

previous sections are ways to capture the spatial relationships

between two 3D point cloud objects. We have defined several

similarity measures that can be applied to the descriptors to

assess how similar one pair of objects is to another spatially.

In total, 21 different methods have been described, each



Fig. 10. Similarity matrices computed for 202 object pairs from the NPM3D dataset. Each matrix shown uses a different method to compute the similarity
between two pairs of 3D point cloud objects. All images are scaled to the range [0, 1].

Fig. 11. Similarity matrix between all 21 methods of computing spatial
similarities between object pairs.

producing a similarity S. In this section, we compare these

methods on the NPM3D hand-labeled point cloud dataset [15].

We begin by computing a spatial relationship graph (SRG)

over a portion of the data using the approach described in

[10]. We then extract a subgraph containing only edges where

the maximum distance between objects is less than 5 meters.

This ensures that projected images maintain a reasonable size

during rasterizaton. The resulting subgraph contains 202 object

pairs, each consisting of a referent and argument 3D point

cloud such as the ones in Fig. 1.

For every pair of graph edges (two object pairs), we com-

pute the similarity score using each of the methods described

above and produce a similarity matrix (Fig. 10). The matrices

retain the original ordering of the pairs, so patterns can be

observed between them. While it is difficult to draw any

meaningful conclusions from these matrices alone, we can get

a sense of how restrictive each method is at assigning simi-

larity. For example, the TFN-SA-Mean-PD method generally

assigns high similarity scores, whereas the HoF-Min-T method

is much more likely to give low scores.

We next look at how consistent the methods are at iden-

tifying the same set of similar object pairs. For any pair of

methods (i, j) and object pair index k, we identify the top 5

matches (other than k) using each method. Let Mik be the

set of 5 object pairs that most closely match object pair k
according to method i, and likewise Mjk the set of 5 pairs

according to method j. We define the method similarity as

sm(i, j) =
1

|K|

∑

k∈K

|Mik ∩Mjk|

|Mik ∪Mjk|
. (23)

sm(i, j) represents the average Jaccard index between the top

5 matches of methods i and j over all object pairs. The

similarity matrix for all methods is shown in Fig. 11. From

this we see that there is general agreement within the HoF and

TFN methods, but a clear difference between these two broad

categories of approaches.



(a)

(b)

Fig. 12. Top matches (decreasing left to right) for the referent object pair from Fig. 1a using the HoF-Min-T (a) and TFN-BB-3D-PD (b) methods.

(a)

(b)

Fig. 13. Top matches (decreasing left to right) for the referent object pair from Fig. 1b using the HoF-Min-T (a) and TFN-BB-3D-PD (b) methods.

Lastly, we look at a few examples in detail to gain a better

understanding of how two of the methods compare in practice.

Fig. 12 shows the top 6 matches for the object pair in Fig. 1a

using the HoF-Min-T and TFN-BB-3D-PD methods. (The top

match is always an identical match.) The HoF-Min-T method

was chosen as a representative of the HoF approaches for its

sensitivity to the distance between objects and the TFN-BB-

3D-PD method was chosen to demonstrate the full capabilities

of the 3D bounding box TFN-RPD. Not counting the top

identical match, 2 of the 5 object pairs are common to both

methods. We note that the reference object pair in Fig. 13

appears as the second best match using the TFN-BB-3D-PD

method, but does not appear in the top 5 matches of the HoF-

Min-T method.

Fig. 13 shows another example using the object pair in

Fig. 1b and the same two similarity methods. Again, 2 of

the 5 top matching object pairs are common to both methods.

In this case, the reference objects from Fig. 12 appear as top

matches for both methods.

VII. CONCLUSION

The relative position between two 3D point cloud objects

can be captured in a variety of ways, each with its own

set of strengths and weaknesses. The HoF-RPD and TFN-

RPD features described above and the various methods to

compare them all share the fundamental quality of being able

to describe the spatial relationship between two objects and

evaluate the similarity of that relationship to another pair of

objects. This is a critical component of many spatial reasoning

applications, and depending on the problem specifics, some

approaches may be better suited than others.

The HoF-based methods as used here have several short-

comings in the context of evaluating spatial relationships

between 3D point clouds. Chiefly among these is the current

requirement to rasterize the pair of objects into a common

image space, limiting the distance at which the force his-

tograms can be computed. Objects that are very far apart

may not actually have any computed angles θ that intersect



both objects, resulting in an empty histogram. This issue

could be mitigated by using a vector-based HoF method or by

increasing the histogram resolution. Another strategy might be

to utilize a 3D-based HoF method directly, or one specifically

adapted for point clouds.

The difficulty in applying the HoF methods at long distances

suggests that they may not be well-suited for applications

where this is the main type of spatial relationship. As objects

move farther apart, the relationship between them can be more

closely modeled as a single crisp vector, and the more complex

spatial features become less relevant. In these contexts, the

TFN-based methods seem more appropriate as they make

direct use of this directional vector. In particular, methods that

do not rely on overlapping sets, such as the GIoU and PD

methods, can be more robust to small variances in the object

positions.

Although the TFN methods are not as descriptive as the

HoF methods, they can still be quite useful for identifying

and characterizing general relationships between objects. By

utilizing the centroids of the point clouds, the PD method is

most capable of the TFN methods at capturing the underlying

spatial distribution of the objects. Furthermore, the full 3D

bounding box methods seem to be most appropriate to use in

most cases, unless there is a specific need to consider axes

independently.

It should be noted that we have not explored the notion of

rotation and scale invariance in the present work. Such issues

are often critical aspects of spatial reasoning systems and

depend on the ability to normalize and compare descriptors

in a common frame of reference. Several strategies have been

employed for the histogram of forces [18], however the need

for normalization remains application dependent.

Simplifying an object to its AABB introduces empty space

that is not part of the original object. The use of the point

cloud centroid is an attempt to mitigate this effect, but other

approaches such as oriented bounding boxes or a hierarchical

method could also be used. AABBs are inherently dependent

on the frame of reference, and the impact of choosing an

appropriate frame will be explored in future work.

In conclusion, while the HoF methods are best suited for

cases where objects are relatively close together and consist

of intricate shape details that need to be captured, the TFN

methods can provide an alternative approach that may be easier

to implement and more appropriate for use cases where shape

discrimination is less important than relative position. Both

approaches have qualities that make them desirable to use in

certain situations, and many variations on how they can be

applied. Ultimately, the utility of a relative position descriptor

is dependent on the problem domain and the application

requirements, and subjective analysis can make any one of

these strategies a good solution.
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