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Outline

« Background

« Fuzzy measures and the Choquet integral
» Shapley value and interaction index

« Visualizing fuzzy measures
+ Weighted matrix diagram
+ Showing data coverage

« Examples
 OWA operators
+ MCDM
* Information fusion

e« Conclusion
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Fuzzy Measure

Given a finite set X = {x4, ..., x,;}
A fuzzy measure is a function g: P(X) —» R* which satisfies

() g(@) =0
(ii) A € B € X implies g(4) < g(B)

Usually we define g(X) = 1.

P(X) is the power set of X.
« Eg.for X = {x, x5, x3}, P(X) = {Q): {x b i {xs ) {xcg, %23 {q, 23} {x2, X3}, {xl,xz,x3}}.
We can think of g(A4) as representing the value or utility of the subset 4 c X.
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Shapley Value

« The Shapley value of a fuzzy measure g is defined as the vector [s, ..., s,] Where

si= y SRR cun - g, withn=Ix

KSx\i

« The vector is normalized such that };i*; x; = g(X).

- Each s; represents the average contribution that x; makes to the worth of the set
when added to an existing subset.
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Interaction Index

The Shapley value can be generalized to extend to arbitrary subsets of X.
The interaction index of a subset A € X for a fuzzy measure g is defined as

W= ) (n(_nlljlllzllili!)llBl!z(—l)M\C'g(CUB), withn = X
BCX\A " CcA

1(4) gives a sense of the worth of the set 4 in the context of the fuzzy measure.
When I(4) > 0, there is positive synergy between the elements.
When I(4) < 0, the elements are redundant.
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Fuzzy Integral

« Let h: X - [0, 1] be a function that specifies the value of a single element x; € X.
« Given h and g, the discrete Choquet integrol is defined as

C,(h) = j 0 g = Zh(xnm) 9(A) — g(4i_1)]

where  is a permutation of X such that h(x; 1)) = h(xzz) = = h(xem))
and A; = {xn(l), xn(i)} with g(AO) = 0.

- A single data sample h produces an output C,(h) that uses only n of the 2"
possible subsets of X, implying that data coverage may be important in learning

a good meadsure.
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Visualizing a Fuzzy Measure (1)

« Suppose we have a fuzzy measure g defined over a set X = {xy, x,, x3}.
« Begin by constructing a binary indicator matrix.

ARSI &

i ok > cid A A
N R AR ARG OC R e
{1} 03

1 {z2} 02
{3} 04

T2 {x1,2z2} 0.7
{x1,z3} 0.8

{x2,z3} 04

s {z1,22,23} 1
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Visualizing a Fuzzy Measure (2)

« Next, adjust the width of each column subset A to be proportional to g(A).
« Since g(@) = 0, the first column is not shown.

03 02 04 0.7 0.8 0.4 1 A g(A)
) 0
1 {3;‘1} 0.3
{z2} 02
. {z3} 04
{x1,z2} 0.7
{x1,z3} 0.8
. {x2,z3} 04
{x1,x2,23} 1
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Visualizing a Fuzzy Measure (3)

« Then, separate the cardinality sets and sort the columns by increasing value
within each set.

02 03 0.4 0.4 0.7 0.8 A g(A)
0

T {331} 0.3
{x2} 0.2
. {3} 04
{x1,22} 0.7
{z1,23} 0.8
N {x2,z3} 04

{z1,22,23} 1
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Visualizing a Fuzzy Measure (4)

- The incremental contribution of source i in subset 4; is Ag;; = g(4;) — g(4,\i).
« These are shown as horizontal black bars and the indicator matrix becomes gray.

02 0.3 04 0.4 0.7 0.8 1 A g(A)
/)

| {561} 0.3
{x2} 0.2
. {3} 04
{:El,fcg} 0.7
{x1,23} 0.8
N {x2,z3} 04

{z1,22,23} 1
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Visualizing a Fuzzy Measure (5)

« The row heights are scaled proportionally to the Shapley index of each source.
« Wider rows indicate more important sources.

0.2 0.3 04 0.4 0.7 0.8 1 A g(A)
O 0

T 0.45 {1} 03
{x2} 0.2

{3} 04

T2 0.2 {:El, 582} 0.7
{x1,z3} 0.8

3 0.35 {z2,23} 0.4

{z1,22,23} 1
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Visualizing a Fuzzy Measure (6)

* Finally, we can show the

0.2 0.3 04 0.4 0.7 0.8 . . . .
interaction indices for
s each subset as a bar
= | graph below the diagram.
« The interaction index I1(A4)
2 v for singletons is equal to
the Shapley value.
T3 0.35

» Positive values (red) show
synergy and negative

1 values (blue) show
' P — : redundancy.
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Learning a FM from Data

- A FM lattice visualization can show which variables are supported by data [1].
« Each data sample is shown as a walk through the lattice.

- We can see unsupported subsets, but it can be difficult to identify the
corresponding source elements.

TABLE I: Fuzzy Measure TABLE II: Example Data
A g(A) h(z1)  h(x2) hxs) | 7y 7o) 7w @07 0.8 ®0.4
O 0 0.74 0.13 0.14 1 3 2
{1} 03 0.94 0.09 0.74 1 3 2
{xz2} 02 0.97 0.13 0.75 1 3 2 ® 0.4
{x3} 04 0.92 0.96 0.74 2 1 3
{x1,22} 0.7 0.91 0.20 0.92 3 1 2
{z1,z3} 0.8
{x2,23} 04 0
{xl y L2, 2133} 1
[1TA.J. Pinar, T. C. Havens, M. A. Islam, and D. T. Anderson, “Visualization and learning of the Choquet integral with
@ Univ ersity of Missouri limited training data,” in 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Naples, Italy, July 2017.
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Looking at Data Coverage
H

- Add a data coverage histogram
D above the diagram and normalize
within each cardinality set.

« A horizontal line shows the mean
visitation value and bars that
extend above this are darkened.

0.45

0.2
h(z1)  h(x2) h(zs) | 7y 7y 73
0.35 0.74 0.13 0.14 1 3 2
0.94 0.09 0.74 1 3 2
0.97 0.13 0.75 1 3 2
I 1 092 096 074 | 2 I 3
0.91 0.20 0.92 3 1 2
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Examples: Min & Max

A fuzzy measure defines how the Choquet integral behaves.
« The min operator only gives value to the last element added in the sort.
- The max operator gives full value to the first element.

Min
T 0.333 T 0.333
A gmin(A) gmax(A)

{z1} 0O 1 T2 0.333 s 0.333

{z2} O |

{zz} 0O |
{z1,22} 0 1 T3 0.333 T3 0.333
{z1,23} 0O |

Ta, T3
{za.23} 0 ! 1

{ri, 20,23} 1 I H H
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Examples: Mean & Median

- The mean operator shows uniform black bar sizes and a vertical striping pattern.
« The median operator gives all value to the middle cardinality set.

Mean Median
T 0.333 T 0.333
A Imean(A) Ymedian(A)
[/I) 0
{z1} 033 0 T2 0.333 0.333
{2} 033 0 "
{x3} 033 0
{z1,22} 0.67 1 T3 0.333 0.333
{z1, 23} 067 1 v
{z2, 23} 0.67 1

{I1:I27I3} 1 | !
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More 3-Source Examples

* In the additive FM, g(A U B) = g(4) + g(B), and there are no interactions.
« When one source is dominant, it has a wider row and more black area.

Additive One Dominant Source

Tl
A Jadd(A) Yone(A)
0 0 T
{z1} 02 0.86 e
{za} 03 0.03
{z3} 05 0.05 -
{z1,22} 0.5 0.98 0.122
{z1,23} 07 0.91 0.0967

{z2.23} 08 0.42

CARRETEE) S ! H
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MCDM Example

 Fuzzy integrals can also be used for multicriteria decision-making.
- This example from [2] is used to score individuals on four judging criteriq, x; to x,.

A g(4)

70 T 0.287
{z1} 107
gﬁ ig:g T2 0.148
{xs} 1076 L3 0.0833

{5121, ZCQ} 10—6

{5121, :Cg} 10—6

{z1, 24}  0.666667 T4
{:cg, :Cg} 10—6

{z0.24} 0389743

{5123, ZC4} 10—6

0.482

{:El,:CQ,ZCg} 10—6 1
{z1,22,24}  0.666667
{x1. 23,24}  0.666667 0 I
{x2,23,24} 0389743
{1, 20, 23,24} 1 !
[2] M. Grabisch and M. Roubens, “Application of the Choquet integral in multicriteria decision making,”
University of Missouri Fuzzy Measures and Integrals: Theory and Applications, pp. 348-374, 2000.
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Embedded OWA Operators

A fuzzy measure can have a
embedded OWA operator.

_ T 0.195
* In this example, L
T 0.243
(0 A=0Q ?
U(0,0.4) |A]=1 %3 ‘ 0.165
0.4 |A| = 2
A) = <
g(4) 07 |4l =3 - 0.207
U.7,1) |Al =4

Vertical striping can be
observed in the cardinality 3 o il _—  —
and 4 sets.
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Measures Learned from Data

* In [3], a fuzzy measure
is learned to
aggregate the output | W |

« The data visitation H
histogram shows il H H H il
almost all the data U

of 7 neural networks.
used a single walk.

0.142

0.142 0_(9:900000 cooss
0.142

« The diagram shows
this FM acts mainly as 2

a min operator and 73 G w7 BN\
could be represented 24 0.142 8"%
as an OWA. i 7 e

« All sources areroughly gz
equal in importance.

0.143
0.145

[3] M. A. Islam, D. T. Anderson, A. J. Pinar, T. C. Havens, G. Scott, and J. M. Keller, “Enabling explainable fusion in deep
University of Missouri learning with fuzzy integral neural networks,” IEEE Transactions on Fuzzy Systems (accepted), 2019, arXiv: 1905.04394.
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Conclusion

« We presented a weighted matrix visualization for understanding fuzzy measures.

 This technique provides detail into the interactions between sources and can
help determine if the full expressive power of the full fuzzy integral is required.

 Although it's possible to use an arbitrary number of sources, interpretability
decreases with many sources.

« An interactive version that renormalizes subsets may be useful for large
problems.

« Code is available on Code Ocean at https://codeocean.com/capsule/6663959.
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